首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
K. H. Hu  E. Liu  K. Dean  M. Gingras  W. DeGraff    N. J. Trun 《Genetics》1996,143(4):1521-1532
We isolated and characterized three genes, crcA, cspE and crcB, which when present in high copy confer camphor resistance on a cell and suppress mutations in the chromosomal partition gene mukB. Both phenotypes require the same genes. Unlike chromosomal camphor resistant mutants, high copy number crcA, cspE and crcB do not result in an increase in the ploidy of the cells. The cspE gene has been previously identified as a cold shock-like protein with homologues in all organisms tested. We also demonstrate that camphor causes the nucleoids to decondense in vivo and when the three genes are present in high copy, the chromosomes do not decondense. Our results implicate camphor and mukB mutations as interfering with chromosome condensation and high copy crcA, cspE and crcB as promoting or protecting chromosome folding.  相似文献   

2.
The 1:2 complexes of camphor enantiomers with alpha-cyclodextrin in (2)H(2)O manifest differences in longitudinal and transverse relaxation rates of camphor methyl protons owing to chiral recognition. The relaxation data obtained at two magnetic fields were quantitatively analyzed using the model of anisotropic overall tumbling with internal motion. In experimental conditions (guest-to-host ratio = 1:20, T = 300.6K), all camphor molecules are complexed. The complexes are not rigid but the rotational diffusion of camphor enantiomers embedded inside the capsules formed by two alpha-cyclodextrin hosts is well outside the extreme narrowing region. Both differences in the anisotropic overall tumbling and internal rotation of all methyl groups participate in enantiomeric differentiation of the relaxation rates. Anisotropic tumbling of camphor molecules provides information on the orientation of the guest in the host capsule that for the complex under study could not be obtained by other methods.  相似文献   

3.
4.
This study aimed to investigate the effect of supplemental camphor on the performance and immune functions of Japanese quail by feeding graded levels (0 (control), 250, 500, 750, 1000, 5000 or 10 000 ppm) of camphor during a 42-day feeding trial. In all, 280 1-day-old quail chicks were randomly assigned into 28 cages of 10 chicks each with separate feeders. The results clearly demonstrated that camphor did not have a significant effect on BW, BW gain, total experimental average daily feed intake, feed conversion ratio, internal organ relative weights and biochemical parameters such as uric acid, albumin, total protein and triglyceride; however, plasma cholesterol concentration was significantly different in a linear manner, in which 500 ppm of camphor resulted in a lower level of cholesterol. Alternatively, greater concentrations of glucose and high-density lipoprotein (HDL) were also found in 5000 and 1000 ppm of camphor groups, respectively. Cellular responses to the phytohaemagglutinin-P and 2,4-dinitro 1-chlorobenzene skin test were not influenced by dietary camphor. Humoral responses to secondary sheep red blood cells, avian influenza virus (AIV) and Newcastle disease virus (NDV) immunisations were positively influenced by camphor supplementation, in which greater secondary response to sheep erythrocytes belonged to 750 and 1000 ppm of camphor groups; whereas, diet supplementation with camphor had no significant effect on lymphoid organ weights and heterophil-to-lymphocyte ratio. The greatest AIV antibody titers were seen in groups, which received 1000 and 5000 ppm of camphor (P<0.05) and the values of NDV antibody titers increased with an increase in the camphor consumption. Furthermore, dietary inclusion of 500 ppm of camphor positively decreased coliform populations in the gastrointestinal tract (GIT). In addition, an increase in lactic acid bacteria was also observed in quails, which were fed on the diets containing 750 ppm camphor. Collectively, these data suggest that as a phytogenic feed additive, camphor may effectively act as a modulator of health status (by increasing glucose and HDL), GIT microbiota and immunological responses of the Japanese quail.  相似文献   

5.
Proteins are actively unfolded to pass through narrow channels in macromolecular complexes that catalyze protein translocation and degradation. Catalyzed unfolding shares many features that characterize the mechanical unfolding of proteins using the atomic force microscope (AFM). However, simulations of unfolding induced by the AFM and when a protein is translocated through a pore suggest that each process occurs by distinct pathways. The link, if any, between each type of unfolding, therefore, is not known. We show that the mechanical unfolding energy landscape of a protein, obtained using an atomistic molecular model, can be used to predict both the relative mechanical strength of proteins when unfolded using the AFM and when unfolded by translocation into a pore. We thus link the two processes and show that the import rate through a pore not only depends on the location of the initiation tag but also on the mechanical properties of the protein when averaged over all the possible geometries that are relevant for a given translocation initiation site.  相似文献   

6.
We show via single-molecule mechanical unfolding experiments that the osmolyte glycerol stabilizes the native state of the human cardiac I27 titin module against unfolding without shifting its unfolding transition state on the mechanical reaction coordinate. Taken together with similar findings on the immunoglobulin-binding domain of streptococcal protein G (GB1), these experimental results suggest that osmolytes act on proteins through a common mechanism that does not entail a shift of their unfolding transition state. We investigate the above common mechanism via an Ising-like model for protein mechanical unfolding that adds worm-like-chain behavior to a recent generalization of the Wako-Saitô-Muñoz-Eaton model with support for group-transfer free energies. The thermodynamics of the model are exactly solvable, while protein kinetics under mechanical tension can be simulated via Monte Carlo algorithms. Notably, our force-clamp and velocity-clamp simulations exhibit no shift in the position of the unfolding transition state of GB1 and I27 under the effect of various osmolytes. The excellent agreement between experiment and simulation strongly suggests that osmolytes do not assume a structural role at the mechanical unfolding transition state of proteins, acting instead by adjusting the solvent quality for the protein chain analyte.  相似文献   

7.
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.  相似文献   

8.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

9.
We develop a computational model to compare the relative importance of unbinding and unfolding of actin cross-linking proteins (ACPs) in the dynamic properties of the actin cytoskeleton. We show that in the strain-stiffening regime with typical physiological and experimental strain rates, unbinding events are predominant with negligible unfolding. ACPs unbound by greater forces experience larger displacements, with a tendency to rebind to different filaments. At constant strain, stress relaxes to physiological levels by unbinding only—not unfolding—of ACPs, which is consistent with experiments. Also, rebinding of ACPs dampens full relaxation of stress. When the network is allowed to return to a stress-free state after shear deformation, plastic deformation is observed only with unbinding. These results suggest that despite the possibility of unfolding, unbinding of ACPs is the major determinant for the rheology of the actin network.  相似文献   

10.
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.  相似文献   

11.
The two-protein complex between putidaredoxin (Pdx) and cytochrome P450(cam) (CYP101) is the catalytically competent species for camphor hydroxylation by CYP101. We detected a conformational change in CYP101 upon binding of Pdx that reorients bound camphor appropriately for hydroxylation. Experimental evidence shows that binding of Pdx converts a single X-proline amide bond in CYP101 from trans or distorted trans to cis. Mutation of proline 89 to isoleucine yields a mixture of both bound camphor orientations, that seen in Pdx-free and that seen in Pdx-bound CYP101. A mutation in CYP101 that destabilizes the cis conformer of the Ile 88-Pro 89 amide bond results in weaker binding of Pdx. This work provides direct experimental evidence for involvement of X-proline isomerization in enzyme function.  相似文献   

12.
A new method for determining the heat capacity change for protein folding   总被引:10,自引:0,他引:10  
C N Pace  D V Laurents 《Biochemistry》1989,28(6):2520-2525
In order to use results from calorimetry or thermal unfolding curves to estimate the free energy change for protein unfolding at 25 degrees C, it is necessary to know the change in heat capacity for unfolding, delta Cp. We describe a new method for measuring delta Cp which is based on results from urea and thermal unfolding curves but does not require a calorimeter. We find that delta Cp = 1650 +/- 200 cal/(deg.mol) for the unfolding of ribonuclease T1 and that delta Cp = 2200 +/- 300 cal/(deg.mol) for the unfolding of ribonuclease A.  相似文献   

13.
It appears plausible that natural selection constrains, to some extent at least, the stability in many natural proteins. If, during protein evolution, stability fluctuates within a comparatively narrow range, then mutations are expected to be fixed with frequencies that reflect mutational effects on stability. Indeed, we recently reported a robust correlation between the effect of 27 conservative mutations on the thermodynamic stability (unfolding free energy) of Escherichia coli thioredoxin and the frequencies of residues occurrences in sequence alignments. We show here that this correlation likely implies a lower limit to thermodynamic stability of only a few kJ/mol below the unfolding free energy of the wild-type (WT) protein. We suggest, therefore, that the correlation does not reflect natural selection of thermodynamic stability by itself, but of some other factor which is linked to thermodynamic stability for the mutations under study. We propose that this other factor is the kinetic stability of thioredoxin in vivo, since( i) kinetic stability relates to irreversible denaturation, (ii) the rate of irreversible denaturation in a crowded cellular environment (or in a harsh extracellular environment) is probably determined by the rate of unfolding, and (iii) the half-life for unfolding changes in an exponential manner with activation free energy and, consequently, comparatively small free energy effects can have deleterious consequences for kinetic stability. This proposal is supported by the results of a kinetic study of the WT form and the 27 single-mutant variants of E. coli thioredoxin based on the global analyses of chevron plots and equilibrium unfolding profiles determined from double-jump unfolding assays. This kinetic study suggests, furthermore, one of the factors that may contribute to the high activation free energy for unfolding in thioredoxin (required for kinetic stability), namely the energetic optimization of native-state residue environments in regions, which become disrupted in the transition state for unfolding.  相似文献   

14.
Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as "spacers" that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (> approximately 20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation.  相似文献   

15.
We have studied the extent of coincidence of the pathway of unfolding of protein globules upon experimental modeling of protein unfolding caused by external actions and denaturants. To this end, we compared experimental Φ-values reported in the literature and Φ-values obtained by us upon modeling of unfolding of immunoglobulin-binding domains of proteins L and G caused by external actions at a constant rate. A comparison of the results of calculation with the experimental data shows that the folding pathways for protein L coincide, while those for protein G do not coincide despite structural similarity of these proteins.  相似文献   

16.
Protecting osmolytes are widespread small organic molecules able to stabilize the folded state of most proteins against various denaturing stresses in vivo. The osmophobic model explains thermodynamically their action through a preferential exclusion of the osmolyte molecules from the protein surface, thus favoring the formation of intrapeptide hydrogen bonds. Few works addressed the influence of protecting osmolytes on the protein unfolding transition state and kinetics. Among those, previous single molecule force spectroscopy experiments evidenced a complexation of the protecting osmolyte molecules at the unfolding transition state of the protein, in apparent contradiction with the osmophobic nature of the protein backbone. We present single-molecule evidence that glycerol, which is a ubiquitous protecting osmolyte, stabilizes a globular protein against mechanical unfolding without binding into its unfolding transition state structure. We show experimentally that glycerol does not change the position of the unfolding transition state as projected onto the mechanical reaction coordinate. Moreover, we compute theoretically the projection of the unfolding transition state onto two other common reaction coordinates, that is, the number of native peptide bonds and the weighted number of native contacts. To that end, we augment an analytic Ising-like protein model with support for group-transfer free energies. Using this model, we find again that the position of the unfolding transition state does not change in the presence of glycerol, giving further support to the conclusions based on the single-molecule experiments.  相似文献   

17.
We study the effect of microwaves at 2,450 MHz on protein unfolding using surface plasmon resonance sensing. Our experimental method makes use of the fact that unfolding proteins tend to bind to chaperones on their unfolding pathway and this attachment is readily monitored by surface plasmon resonance. We use the protein citrate synthase (CS) for this study as it shows strong binding to the chaperone alpha crystallin when stressed by exposure to excess temperature. The results of microwave heating are compared with the effect of ambient heating and a combination of ambient and microwave heating to the same final temperature. We study the temperature distributions during the heating process. We show that microwaves cause a significantly higher degree of unfolding than conventional thermal stress for protein solutions heated to the same maximum temperature.  相似文献   

18.
Differential Scanning Calorimetry (DSC) has been used in the past to study the thermal unfolding of many different viruses. Here we present the first DSC analysis of rabies virus. We show that non-inactivated, purified rabies virus unfolds cooperatively in two events centered at approximately 62 and 73 °C. Beta-propiolactone (BPL) treatment does not alter significantly viral unfolding behavior, indicating that viral inactivation does not alter protein structure significantly. The first unfolding event was absent in bromelain treated samples, causing an elimination of the G-protein ectodomain, suggesting that this event corresponds to G-protein unfolding. This hypothesis was confirmed by the observation that this first event was shifted to higher temperatures in the presence of three monoclonal, G-protein specific antibodies. We show that dithiothreitol treatment of the virus abolishes the first unfolding event, indicating that the reduction of G-protein disulfide bonds causes dramatic alterations to protein structure. Inactivated virus samples heated up to 70 °C also showed abolished recognition of conformational G-protein specific antibodies by Surface Plasmon Resonance analysis. The sharpness of unfolding transitions and the low standard deviations of the Tm values as derived from multiple analysis offers the possibility of using this analytical tool for efficient monitoring of the vaccine production process and lot to lot consistency.  相似文献   

19.
Various helicases and single-stranded DNA (ssDNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ in the absence of ATP. We show that the efficiency of BLM-mediated GQ unfolding correlates with the binding stability of BLM to ssDNA overhang, as modulated by the nucleotide state, ionic conditions, overhang length and overhang directionality. In particular, we observed enhanced GQ unfolding by BLM in the presence of non-hydrolysable ATP analogs, which has implications for the underlying mechanism. We also show that increasing GQ stability, via shorter loops or higher ionic strength, reduces BLM-mediated GQ unfolding. Finally, we show that while WRN has similar activity as BLM, RecQ and RECQ5 helicases do not unfold GQ in the absence of ATP at physiological ionic strength. In summary, our study points to a novel and potentially very common mechanism of GQ destabilization mediated by proteins binding to the vicinity of these structures.  相似文献   

20.
The quaternary structure of streptavidin in urea   总被引:2,自引:0,他引:2  
We report on the interactions of urea and guanidinium salts with streptavidin. Gel filtration chromatography in 0, 4, 6, and 7 M urea indicates that the streptavidin tetramer remains intact in urea. Biotin alters the electrophoretic mobility of streptavidin whether or not 6 M urea is present. The intrinsic fluorescence of streptavidin is increased and blue-shifted in 6 M urea. The fluorescence changes indicate the absence of unfolding. A conformational response to urea is possible, but much of the fluorescence change is due to urea binding as a weak biotin analog (Ka approximately 1.3 M-1). The resistance to structural perturbation by urea reflects the structural stability of streptavidin's anti-parallel beta-barrel motif. Unfolding is sluggish in 6 M guanidinium hydrochloride (half-time, approximately 50 days). After guanidinium thiocyanate unfolding, streptavidin can be refolded, but the unfolding and refolding transitions are centered at different concentrations of perturbant. Slow unfolding, with a 15th power dependence on guanidinium thiocyanate concentration, may be partially responsible for the noncoincidence of the unfolding and refolding processes. Nonequilibrium behavior is also seen in 6 M urea, as native streptavidin does not unfold and guanidinium thiocyanate unfolded streptavidin does not refold. Refolding does occur at lower concentrations of urea. Guanidinium thiocyanate only slowly unfolds the biotin-streptavidin complex. In the presence of biotin, unfolded streptavidin does not refold in 6 M guanidinium thiocyanate or in 6 M urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号