首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic study of an immobilised lipase esterification reaction in dipropyl ether for resolution of ketoprofen indicated a Bi Bi Ping Pong mechanism with dead-end inhibition of the alcohol was occurring for both enantiomers and this is was confirmed experimentally. Parameters in the kinetic equation and reaction activation energies for the two enantiomers were determined by non-linear regression.  相似文献   

2.
The kinetics of stereoselective esterification of racemic Naproxen with trimethylsilyl methanol by Candida cylindracea lipase in organic solvents has been investigated. A Ping-Pong Bi Bi mechanism with competitive inhibition by this alcohol for each enantiomer -has been identified. The rate equations were further analyzed in the time-course reaction after considering the effect of enzyme deactivation in the organic mixtures, but not in isooctane. Effects of the hydrophobicity of solvent on the solubility of the racemate, the kinetic parameters and their combinations are also discussed.  相似文献   

3.
《Process Biochemistry》2007,42(6):951-960
Experimental determination of the separate effects of palm oil and methanol concentrations on the rate of their enzymatic transesterification was used to propose suitable mechanismic steps and to test the generated kinetic model. The reaction took place in n-hexane organic medium and the lipase used was from Mucor miehei. At a constant methanol concentration of 300 mol m−3, it was found that, initially as the palm oil concentration increased, the initial reaction rate increased. However, the initial rate dropped sharply at substrate concentrations larger than 1250 mol m−3. Similar behaviour was observed for methanol concentration effect, where at a constant substrate concentration of 1000 mol m−3, the initial rate of reaction dropped at methanol concentrations larger than 3000 mol m−3. Ping Pong Bi Bi mechanism with inhibition by both reactants was adopted as it best explains the experimental findings. A mathematical model was developed from a proposed kinetic mechanism and was used to identify the regions where the effect of inhibition by both substrates arised. The proposed model equation is essential for predicting the rate of methanolysis of palm oil in a batch or a continuous reactor and for determining the optimal conditions for biodiesel production.  相似文献   

4.
Effects of reaction media, alcohols and water on the enzyme activity of the immobilised Candida antarctica lipase were investigated for the separation of racemic flurbiprofen by an esterification reaction catalysed by immobilised enzyme in organic media. The S-enantiomer of flurbiprofen was directly resolved by the immobilised lipase esterification reaction in acetonitrile. Ping-Pong Bi–Bi kinetics were found to fit the initial reaction well of all the experimental runs. Model parameters for the reaction kinetics were evaluated from experiments at relatively low substrate concentrations, have shown to be applicable for preparative separation scale at high concentrations. Finally, the gram-scale production of single enantiomer with the optical purity of 93% e.e. was obtained.  相似文献   

5.
A lipase from Aspergillus niger immobilized by adsorption on microporous, polypropylene hollow fibers was used to effect the hydrolysis of the glycerides of melted butterfat at 40 degrees C and pH 7.0. Mcllvane buffer was pumped through the lumen and melted butterfat was pumped courrently through the shell side of a shell-and-tube reactor. Nonlinear regression methods were employed to determine the kinetic parameters of three nested rate expressions derived from a Ping Pong Bi Bi enzymatic mechanism coupled with three nested rate expressions for the thermal deactivation of the enzyme. For the reaction conditions used in this research, a four-parameter rate expression (which includes a two-parameter deactivation rate expression and a two-parameter hydrolysis rate expression) is sufficient to model the overall release of free fatty acids from the triglycerides of butterfat as a function of space time and time elapsed after immobilization. At a space time of 3.7 h immediately after immobilization of lipase, 50% of the fatty acid residues esterified in the sn-1,3 positions of the triglycerides can be released in the hollow-fiber reactor.  相似文献   

6.
The kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by Candida antarctica lipase B supported onto silanized Chromosorb P was studied in a continuous solid/gas reactor. In this system the solid phase is composed of a packed enzymatic sample and is percolated by nitrogen as carrier gas, which simultaneously carries substrates to the enzyme while removing reaction products. In this reactor the thermodynamic activity of substrates and effectors can be perfectly adjusted allowing kinetic studies to be performed under different operating conditions. The kinetics obtained for alcoholysis were suggested to fit a Ping Pong Bi Bi mechanism with dead-end inhibition by the alcohol. The values of all apparent kinetic parameters were calculated and the apparent dissociation constant of enzyme for gaseous ester was found very low compared with the one obtained for liquid ester in organic medium, certainly due to the more efficient diffusion in the gaseous phase. The effect of water thermodynamic activity was also investigated. Water was found to act as a competitive inhibitor, with a higher inhibition constant than n-propanol. Thus alcoholysis of gaseous methyl propionate and n-propanol catalyzed by C. antarctica lipase B was found to obey the same kinetic mechanism as in other non-conventional media such as organic liquid media and supercritical carbon dioxide, but with much higher affinity for the substrates.  相似文献   

7.
A facile enzymatic synthesis process has been developed to directly prepare the 4-morpholinoethyl ester prodrug of (s)-Naproxen from racemic Naproxen using lipases as the biocatalysts in the organic solvent. With the careful selection of lipase (Lipase MY) and reaction medium (cylohexane), a high enantiomeric ratio of 136 for the enzyme was obtained. A Ping-Pong Bi Bi mechanism with competitive inhibition by the alcohol was illustrated from the variation of initial rates with substrate concentrations.  相似文献   

8.
An esterification process was developed for the direct synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester from 2-chlorobutyric acid by using the epoxide 1,2-epoxy-5-hexene and Mucor miehei immobilised lipase as the biocatalyst in a batch reactor. The effect of temperature, catalyst concentration, and substrate and product concentration has been studied. An ordered Bi Uni enzymatic mechanism with competitive inhibition by the epoxide and acid has been proposed. The corresponding kinetic parameters were calculated by non-linear regression. Activation energy shows a value of 8.04kcal/mol. The thermodynamic parameters of the process, enthalpy and entropy, were 15.4kcal/mol and 45cal/mol, respectively.  相似文献   

9.
Immobilized lipase from Candida antarctica (Novozym 435) was used in organic media to catalyze esterifications of vitamins (ascorbic acid and retinol) from hydroxy acid. We described the synthesis of retinyl L-lactate by transesterification between retinol and L-methyl lactate with yield reaching 90% and the synthesis of ascorbyl L-lactate by transesterification between ascorbic acid and L-methyl lactate with yield reaching 80%. The kinetic study of the esterification of vitamins with L-methyl lactate in organic media has been carried out and agrees with ping-pong-ordered Bi-Bi when the initial vitamin concentration is low. When initial vitamin concentration is high, the kinetic is similar to a hybrid ping-pong-ordered Bi Bi or hybrid ping-pong-random Bi Bi mechanism. However, with high initial substrate concentration, change of the kinetic by other phenomena, such as interaction of substrates with molecular sieves, adsorption of the methanol formed, and decreases of substrate diffusion, could be considered. It is obvious that in these conditions, classical enzymology (i.e., Michaelian enzymology) cannot be used for the interpretation of results.  相似文献   

10.
In this article, a kinetic model for the enzymatic transesterification of rapeseed oil with methanol using Callera? Trans L (a liquid formulation of a modified Thermomyces lanuginosus lipase) was developed from first principles. We base the model formulation on a Ping‐Pong Bi‐Bi mechanism. Methanol inhibition, along with the interfacial and bulk concentrations of the enzyme was also modeled. The model was developed to describe the effect of different oil compositions, as well as different water, enzyme, and methanol concentrations, which are relevant conditions needed for process evaluation, with respect to the industrial production of biodiesel. The developed kinetic model, coupled with a mass balance of the system, was fitted to and validated on experimental results for the fed‐batch transesterification of rapeseed oil. The confidence intervals of the parameter estimates, along with the identifiability of the model parameters were presented. The predictive capability of the model was tested for a case using 0.5% (wt. Enzyme/wt. Oil), 0.5% (wt. Water /wt. Oil) and feeding 1.5 times the stoichiometric amount of methanol in total over 24 h. For this case, an optimized methanol feeding profile that constrains the amount of methanol in the reactor was computed and the predictions experimentally validated. Monte‐Carlo simulations were then used to characterize the effect of the parameter uncertainty on the model outputs, giving a biodiesel yield, based on the mass of oil, of 90.8 ± 0.55 mass %. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1277–1290, 2014  相似文献   

11.
Lysyl-tRNA synthetase, dissociated from the multienzyme complexes of aminoacyl-tRNA synthetases from rat liver, was previously found to be 6-fold more active than the synthetase complex in the enzymatic synthesis of P1,P4-bis(5'-adenosyl)tetraphosphate. The bi-substrate and product inhibition kinetics of the reaction are analyzed. Free lysyl-tRNA synthetase exhibits distinctly different kinetic patterns from those of an 18 S synthetase complex containing lysyl-tRNA synthetase. The 18 S synthetase complex shows kinetic patterns which are consistent with an ordered Bi Uni Uni Bi ping-pong mechanism. Free lysyl-tRNA synthetase shows kinetic patterns consistent with a random mechanism. The differences in the enzymatic properties are attributed to the organization of the supramolecular structure of the synthetase complex. The results suggest that association of the synthetases may affect the mechanisms of the synthesis of AppppA.  相似文献   

12.
脂肪酶在微乳液和微乳液凝胶中催化辛酸辛醇的酯化反应   总被引:4,自引:0,他引:4  
脂肪酶在合成反应中具有很高的区域选择性和立体选择性 ,已广泛用于食品工业和药物工业[1,2 ] ,在有机介质中的脂肪酶催化反应已有较多研究[3 ,4 ] 。微乳液一般由表面活性剂、助表面活性剂、油和水等组份组成 ,它是一种热力学稳定、光学透明、宏观均匀而微观不均匀的体系 ,能提供酶催化所需要的巨大油 /水界面[5] 。而将脂肪酶增溶于油包水(W /O)微乳液中的纳米级“水池”中 ,可使酶以分子水平分散[6] ,图 1(a) ,从而可用来模拟细胞微环境中的反应。油包水微乳液中的酶可通过加入明胶而制成固定化酶 ,含明胶的微乳液凝胶 (MBGs)最早…  相似文献   

13.
Cross‐linked enzyme crystal (CLEC) and sol‐gel entrapped pseudomonas sp. lipase were investigated for the esterification of lauric acid with ethanol by considering the effects of reaction conditions on reaction rate. The activation energy for the reaction was estimated to be 1097.58 J/mol and 181.75 J/mol for sol‐gel and CLEC entrapped lipase respectively. CLEC lipase exhibited a marginal internal diffusion effect on reaction rate over sol‐gel lipases and found to be interesting. The overall reaction mechanism was found to conform to the Ping Pong Bi Bi mechanism. The higher efficiency of sol‐gel lipases over CLEC lipases in esterification reaction is mainly due to the combined effects of crowding, confinement and diffusional limitations.  相似文献   

14.
Ashraf Ghanem 《Chirality》2010,22(6):597-603
The solvent versatility of Chiralpak IB, a 3,5‐dimethylphenylcarbamate derivative of cellulose‐based chiral stationary phase, is demonstrated in the direct enantioselective HPLC monitoring of lipase‐catalyzed kinetic resolution of flurbiprofen in nonstandard HPLC organic solvents. Nonstandard HPLC organic solvents were used as the reaction media for the lipase‐catalysis and in mean time as diluent to dissolve the “difficult to dissolve” enzyme substrate (the acid) and as eluent for the simultaneous enantioselective HPLC baseline separation of both substrate and product in one run without any further derivatization. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The effectiveness of lipase immobilized on ceramic beads, in the production of biodiesel from simulated waste cooking oil in organic solvent system, was compared to that of free lipase. Experimental determination of the effect of concentrations of methanol on the rate of the enzymatic transesterification was experimentally determined. In addition, the effectiveness of lipases from bacterial and yeast sources for biodiesel production from simulated waste cooking oil was compared. A kinetic model was developed to describe the system, taking into consideration the mass transfer resistances of the reactants. Inhibition effects by both substrates on the interfacial reaction were also considered. The experimental results were used to determine the kinetic parameters of the proposed model and to determine the effect of mass transfer. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase from P. cepacia on ceramic beads.  相似文献   

16.
In this work, the Candida antarctica lipase B (CALB), produced by recombinant Pichia pastoris , was immobilized and used to synthesize vitamin A palmitate by transesterification of vitamin A acetate and palmitic acid in organic solvent. The reaction conditions including the type of solvent, temperature, rotation speed, particle size, and molar ratio between the two substrates were investigated. It turned out that the macroporous resin HPD826 serving as a carrier showed the highest activity (ca. 9200 U g?1) among all the screened carriers. It was found that the transesterification kinetic of the immobilized CALB followed the ping pong Bi‐Bi mechanism and the reaction product acetic acid inhibited the enzymatic reaction with an inhibition factor of 2.823 mmol L?1. The conversion ability of the immobilized CALB was 54.3% after 15 cycles. In conclusion, the present work provides a green route for vitamin A palmitate production using immobilized CALB to catalyze the transesterification of vitamin A acetate and palmitic acid.  相似文献   

17.
Kinetics and thermodynamics of lipase-catalyzed esterification of l-ascorbic acid in acetone were investigated by using vinyl acetate as acyl donor. The results showed that l-ascorbic acid could generate inhibition effect on lipase activity. A suitable model, Ping-Pong Bi-Bi mechanism having substrate inhibition, was thus introduced to describe the enzymatic kinetics. Furthermore, the kinetic and thermodynamic parameters were calculated from a series of experimental data according to the kinetic model. The inhibition constant of l-ascorbic acid was also obtained, which seemed to imply that enhancing reaction temperature could depress the substrate inhibition. Besides, the activation energy values of the first-step and the second-step reaction were estimated to be 37.31 and 4.94 kJ/mol, respectively, demonstrating that the first-step reaction was the rate-limiting reaction and could be easily improved by enhancing temperature.  相似文献   

18.
This study illustrates the benefits of Celite® supported lipase sol–gels for the transesterification of triolein to produce methyl oleate. A ping–pong bi–bi kinetic model was developed and validated taking into account the inhibition effects of methanol and glycerol as well as the effect of temperature. Although initial reaction rate models are useful for predicting the kinetics in the absence of products, a kinetic model beyond the initial conditions that considers glycerol inhibition is important. The model developed was consistent with the experimental data (R2 = 0.95) predicting an increase in methyl oleate production with increasing methanol concentration up to an optimal range of 1.3 M to 2.0 M depending on the temperature. In general, increasing the temperature increased the initial reaction rate for the immobilized lipase over the temperature range of 40–60 °C. Based on the kinetic constants, the maximum velocity of the reverse reaction is about 25% slower than that of the forward reaction and glycerol inhibition has a more significant effect on the reaction kinetics than methanol inhibition. The model developed would be useful for understanding the effects of methanol and glycerol inhibition as well as temperature on the production of methyl oleate using lipase-mediated enzymatic transesterification.  相似文献   

19.
Lipase from Mucor miehei immobilised by adsorption on microporous, asymmetric hollow fibre membrane reactors was used to hydrolyse two different oils, namely, palm and olive oils. The hydrolysis reaction was carried out at a temperature of 40 °C, an average transmembrane pressure (TMP) of 115 mmHg and oil and aqueous flow rates of 2.5 and 3.0 ml min−1, respectively. It was experimentally proven that adsorption of lipase increased with temperature and was higher on hydrophobic membranes than hydrophilic ones. The effluent concentrations of fatty acid products were measured using gas chromatograph with FID detector. Hydrolysis experimental results were fitted to a multisubstrate kinetic model derived from the Ping Pong Bi Bi mechanism. The final model expression is useful for predicting the free fatty acid profile of the enzymatic hydrolysis of palm and olive oils for different substrate flow rates and enzyme loading.  相似文献   

20.
Analysis of nucleophile separation via lipase catalyzed reactions has been developed on the basis of competitive enzymatic kinetics. Ester synthesis as well as ester interchange reactions catalyzed by lipases in organic media have been analyzed according to a transfer reaction of the acyl group from/to the enzyme. The reversible reactions are conveniently simulated from the knowledge of the a competitive factor of the enzymatic system and of the final equilibrium conditions. The model which is proposed describes the reaction profile in a predictive way. Modelling of alcohol kinetic separation and resolution is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号