首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incretins, enhancers of insulin secretion, are essential for glucose tolerance, and a reduction in their function might contribute to poor beta-cell function in patients with type-2 diabetes mellitus. However, at supraphysiological doses, the incretin glucagon-like peptide-1 (GLP-1) protects pancreatic beta cells, and inhibits glucagon secretion, gastric emptying and food intake, leading to weight loss. GLP-1 mimetics, which are stable-peptide-based activators of the GLP-1 receptor, and incretin enhancers, which inhibit the incretin-degrading enzyme dipeptidyl peptidase-4, have emerged as therapies for type-2 diabetes and have recently reached the market. The pathophysiological basis the clinical use of these therapeutics is reviewed here.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) increases pancreatic insulin secretion via a direct action on pancreatic beta-cells. A high density of GLP-1-containing neurons and receptors is also present in brain stem vagal circuits; therefore, the aims of the present study were to investigate 1) whether identified pancreas-projecting neurons of the dorsal motor nucleus of the vagus (DMV) respond to exogenously applied GLP-1, 2) the mechanism(s) of action of GLP-1, and 3) whether the GLP-1-responsive neurons (putative modulators of endocrine secretion) could be distinguished from DMV neurons responsive to peptides that modulate pancreatic exocrine secretion, specifically pancreatic polypeptide (PP). Whole cell recordings were made from identified pancreas-projecting DMV neurons. Perfusion with GLP-1 induced a concentration-dependent depolarization in approximately 50% of pancreas-projecting DMV neurons. The GLP-1 effects were mimicked by exendin-4 and antagonized by exendin-(9-39). In approximately 60% of the responsive neurons, the GLP-1-induced depolarization was reduced by tetrodotoxin (1 microM), suggesting both pre- and postsynaptic sites of action. Indeed, the GLP-1 effects were mediated by actions on potassium currents, GABA-induced currents, or both. Importantly, neurons excited by GLP-1 were unresponsive to PP and vice versa. These data indicate that 1) GLP-1 may act on DMV neurons to control pancreatic endocrine secretion, 2) the effects of GLP-1 on pancreas-projecting DMV neurons are mediated both via a direct excitation of their membrane as well as via an effect on local circuits, and 3) the GLP-1-responsive neurons (i.e., putative endocrine secretion-controlling neurons) could be distinguished from neurons responsive to PP (i.e., putative exocrine secretion-controlling neurons).  相似文献   

3.
Glucagon-like peptide-1 receptor and proglucagon expression in mouse skin   总被引:2,自引:0,他引:2  
List JF  He H  Habener JF 《Regulatory peptides》2006,134(2-3):149-157
Glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone expressed by alternative post-translational processing of proglucagon in the intestines, endocrine pancreas, and brain. The multiple antidiabetogenic actions of GLP-1 include stimulation of the proliferation and differentiation of the insulin-producing beta cells in the pancreas. The GLP-1 receptor is widely distributed and has been identified in the endocrine pancreas, intestinal tract, brain, lung, kidney, and heart. Here we report the expression of the GLP-1 receptor and proglucagon in the skin of newborn mice located predominantly in the hair follicles, as well as in cultures of skin-derived cells that also express nestin, a marker of cultured cells that have dedifferentiated by epithelial to mesenchymal transition. In cultured skin cells, GLP-1 activates the MAPK/ERK signal transduction pathway, associated with cellular proliferation, differentiation, and cytoprotection. No evidence was found for the activation of cAMP or Ca2+ signaling pathways. Further, redifferentiation of cultured skin-derived cells by incubation in differentiation medium containing GLP-1 induced expression of the proinsulin-derived peptide, C-peptide. These findings suggest a possible paracrine/autocrine role for GLP-1 and its receptor in skin development and possibly also in folliculogenesis.  相似文献   

4.
Glucagon-like peptide-1 receptor is involved in learning and neuroprotection   总被引:19,自引:0,他引:19  
Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.v.) GLP-1 and [Ser(2)]exendin(1-9) (HSEGTFTSD; homologous to a conserved domain in the glucagon/GLP-1 family) enhance associative and spatial learning through GLP-1R. [Ser(2)]exendin(1-9), but not GLP-1, is also active when administered peripherally. GLP-1R-deficient mice have a phenotype characterized by a learning deficit that is restored after hippocampal Glp1r gene transfer. In addition, rats overexpressing GLP-1R in the hippocampus show improved learning and memory. GLP-1R-deficient mice also have enhanced seizure severity and neuronal injury after kainate administration, with an intermediate phenotype in heterozygotes and phenotypic correction after Glp1r gene transfer in hippocampal somatic cells. Systemic administration of [Ser(2)]exendin(1-9) in wild-type animals prevents kainate-induced apoptosis of hippocampal neurons. Brain GLP-1R represents a promising new target for both cognitive-enhancing and neuroprotective agents.  相似文献   

5.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis   总被引:30,自引:0,他引:30  
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained improvement in glycemic control and increased levels of plasma insulin with concomitant administration of the GLP-1 agonist exendin-4 (Ex-4). Blood glucose remained significantly lower for weeks after cessation of exendin-4. STZ induced beta cell apoptosis, which was significantly reduced by co-administration of Ex-4. Conversely, mice with a targeted disruption of the GLP-1 receptor gene exhibited increased beta cell apoptosis after STZ administration. Exendin-4 directly reduced cytokine-induced apoptosis in purified rat beta cells exposed to interleukin 1beta, tumor necrosis fator alpha, and interferon gamma in vitro. Furthermore, Ex-4-treated BHK-GLP-1R cells exhibited significantly increased cell viability, reduced caspase activity, and decreased cleavage of beta-catenin after treatment with cycloheximide in vitro. These findings demonstrate that GLP-1 receptor signaling directly modifies the susceptibility to apoptotic injury, and provides a new potential mechanism linking GLP-1 receptor activation to preservation or enhancement of beta cell mass in vivo.  相似文献   

6.
Hepatocytes form the hepatic acinus as a unit of microcirculation. Following the bloodstream, at least two different zones can be discerned: the periportal (PPH) and the perivenous (PVH) zones. Recently, we found that insulin inhibits glucagon-induced glycogenolysis in PVH specifically. We therefore investigated the region-specific functional effects of glucagon-like peptide-1 (GLP-1), which is known to have an insulin-like activity, on glucagon-induced glycogenolysis in isolated PPH and PVH prepared by the digitonin-collagenase method. GLP-1 inhibited 0.1 nM glucagon-induced increase in glucose release from the PVH of fed rats specifically (p < 0.01) and had an additive effect with insulin. Insulin binding did not differ between PPH and PVH of fed rats. GLP-1 did not displace [125I]-glucagon binding to the purified hepatic cell membrane. Thus, it is directly confirmed that GLP-1 has an insulin-like activity in the liver.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived hormone with cellular protective actions. We hypothesized that GLP-1 would protect the endothelium from injury during inflammation. Our aims were to determine the: (1) effect of GLP-1 on basal microvascular permeability, (2) effect of GLP-1 on increased microvascular permeability induced by lipopolysaccaride (LPS), (3) involvement of the GLP-1 receptor in GLP-1 activity, and (4) involvement of the cAMP/PKA pathway in GLP-1 activity. Microvascular permeability (Lp) of rat mesenteric post-capillary venules was measured in vivo. First, the effect of GLP-1 on basal Lp was measured. Second, after systemic LPS injection, Lp was measured after subsequent perfusion with GLP-1. Thirdly, Lp was measured after LPS injection and perfusion with GLP-1 + GLP-1 receptor antagonist. Lastly, Lp was measured after LPS injection and perfusion with GLP-1 + inhibitors of the cAMP/PKA pathway. Results are presented as mean area under the curve (AUC) ± SEM. GLP-1 had no effect on Lp (AUC: baseline = 27 ± 1.4, GLP-1 = 1 ± 0.4, p = 0.08). LPS increased Lp two-fold (AUC: LPS = 54 ± 1.7, p < 0.0001). GLP-1 reduced the LPS increase in Lp by 75% (AUC: LPS + GLP-1 = 34 ± 1.5, p < 0.0001). GLP-1 antagonism reduced the effects of GLP-1 by 60% (AUC: LPS + GLP-1 + antagonist = 46 ± 2.0, p < 0.001). The cAMP synthesis inhibitor reduced the effects of GLP-1 by 60% (AUC: LPS + GLP-1 + cAMP inhibitor = 46 ± 1.5, p < 0.0001). The PKA inhibitor reduced the effects of GLP-1 by 100% (AUC: LPS + GLP-1 + PKA inhibitor = 56 ± 1.5, p < 0.0001). GLP-1 attenuates the increase in microvascular permeability induced by LPS. GLP-1 may protect the endothelium during inflammation, thus decreasing third-space fluid loss.  相似文献   

8.
Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10 nM) incubation for 24 h. GLP-1 (1 and 10 nM) and control cells had similar action potential durations. However, GLP-1 at 10 nM significantly increased calcium transients and sarcoplasmic reticular Ca2+ contents. Compared to the control, GLP-1 (10 nM)—treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca2+-ATPase and the sodium–calcium exchanger. Moreover, exendin (9–39) amide (a GLP-1 receptor antagonist, 10 nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins.  相似文献   

9.
Wan S  Browning KN  Travagli RA 《Peptides》2007,28(11):2184-2191
Using a brainstem slice preparation, we aimed to study the pre- and postsynaptic effects of glucagon-like peptide-1 (GLP-1) on synaptic transmission to identified pancreas-projecting vagal motoneurons. Following blockade of GABAergic mediated currents with bicuculline, perfusion with 100 nM GLP-1 increased both amplitude and frequency of excitatory postsynaptic currents (EPSCs) in 21 of 52 neurons. Perfusion with the GLP-1 selective agonist exendin-4 (100 nM), also increased the frequency of spontaneous EPSCs, while pretreatment with the GLP-1 selective antagonist, exendin 9-39, prevented the effects of GLP-1. In the presence of kynurenic acid to block ionotropic glutamatergic currents, perfusion with GLP-1 increased the frequency of inhibitory postsynaptic currents (IPSCs) in 28 of 74 neurons; in 14 of these responsive neurons, GLP-1 also increased IPSC amplitude, indicating actions at both pre- and postsynaptic sites. Perfusion with exendin-4 increased the frequency of spontaneous IPSCs, while pretreatment with exendin 9-39 prevented the effects of GLP-1. These results suggest that GLP-1 modulates both excitatory and inhibitory synaptic inputs to pancreas-projecting vagal motoneurons.  相似文献   

10.
A lot of interest has engendered in glucagon-like peptide-1 (GLP-1) as an emerging new drug in the treatment of type 2 diabetes. GLP-1 exerts several effects that reduce glycemia in type 2 diabetes patients. We recently also demonstrated that GLP-1 ameliorates endothelial dysfunction in type 2 diabetes mellitus patients with established coronary heart disease, suggesting a new important cardioprotective role for GLP-1. Because hypertension is overrepresented in diabetes and is adversely influencing survival, we have now investigated direct GLP-1 effects on vascular beds in a rat organ bath model. It was found that GLP-1 relaxed femoral artery rings in a dose-response manner. The relaxant effect from GLP-1 was completely inhibited by the specific GLP-1 receptor antagonist, exendin(9-39). Neither the specific nitric oxide (NO) synthase inhibitor, N-nitro-L-arginine, nor removing of endothelium, affected the GLP-1 relaxant effect. In conclusion, we now report a direct vascular action of GLP-1, relaxing conduit vessels independently of NO and the endothelium.  相似文献   

11.
Glucagon-like-peptide-1 (GLP-1) is a proglucagon-derived peptide expressed in the intestinal enteroendocrine-L cells and released after meal ingestion. GLP-1 reduces postprandial glycemia not only by its hormonal effects, but also by its inhibitory effects on gastrointestinal motility. Recently, we showed that GLP-1 acts in the enteric nervous system of mouse intestine. Therefore our working hypothesis was that GLP-1 may have also a direct influence on the gastric mechanical activity since the major part of experimental studies about its involvement in the regulation of gastric motility have been conducted in in vivo conditions. The purposes of this study were (i) to examine exogenous GLP-1 effects on mouse gastric mechanical activity using isolated whole stomach; (ii) to clarify the regional activity of GLP-1 using circular muscular strips from gastric fundus or antrum; (iii) to analyze the mechanism of action underlying the observed effects; (iv) to verify regional differences of GLP-1 receptors (GLP-1R) expression by RT-PCR. In the whole stomach GLP-1 caused concentration-dependent relaxation significantly anatagonized by exendin (9-39), an antagonist of GLP-1R and abolished by tetrodotoxin (TTX) or Nω-nitro-l-arginine methyl ester (l-NAME), inhibitor of nitric oxide (NO) synthase. GLP-1 was without any effect in fundic strips, but it induced concentration-dependent relaxation in carbachol-precontracted antral strips. The effect was abolished by TTX or l-NAME. RT-PCR analysis revealed a higher expression of GLP-1R mRNA in antrum than in fundus. These results suggest that exogenous GLP-1 is able to reduce mouse gastric motility by acting peripherally in the antral region, through neural NO release.  相似文献   

12.
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

13.
胰高血糖素样肽1受体--治疗糖尿病新药的研究热点   总被引:5,自引:0,他引:5  
胰高血糖素样肽l(glucagon—like peptide—l,GLP-1)与胰岛素分泌和糖代谢调节密切相关。GLP-1与其受体(GLP-1receptor,GLP-1R)结合后,主要通过cAMP和P13K两条信号途径,促进胰岛素的分泌,刺激胰岛β细胞的增殖和分化。对GLP-1R结构和信号传导机制的研究,有助于了解其在糖尿病病理进程中的作用,为开发新型糖尿病治疗药物指明方向。  相似文献   

14.
Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic/satiety hormone that acts through a G protein-coupled receptor. To determine whether or not GLP-2 has any effect on cellular proliferation on neural cells, we examined the effects of this peptide on cultured astrocytes from rat cerebral cortex. The expression of the GLP-2 receptor gene in both cerebral cortex and astrocytes was determined by RT-PCR and Southern blotting. Also, cells responded to GLP-2, producing cAMP in a dose-dependent manner (EC50 = 0.86 nm). GLP-2 also stimulated the DNA synthesis rate in rat astrocytes. When proliferation was assessed by measuring [3H]thymidine incorporation into DNA or staining cells with crystal violet, GLP-2 produced a dose-dependent increase in both parameters. Similarly, when the numbers of cells in different phases of the cell cycle were measured by flow cytometry, a dose-dependent decrease in those in the G0-G1 phase and an increase in those in the S and G2-M phases were observed after 24 h incubation with GLP-2. By contrast, the number of hypodiploid cells was not affected during the experimental time. Also, GLP-2 produced a significant increase in the mRNAs of c-fos and c-jun when gene expression was determined by Northern blotting. These results suggest that GLP-2 directly stimulates the proliferation of rat astrocytes; this may open new insights in the physiological role of this novel neuropeptide.  相似文献   

15.
The incretin hormone glucagon‐like peptide‐1 (GLP‐1) has been implicated in the regulation of appetite by acting as an anorexigenic gut‐brain signal. The postprandial release of GLP‐1 can be blunted in obese humans and animals. However, it remains unknown whether obesogenic diets with varying fat and carbohydrate content may differentially influence the effectiveness of GLP‐1 feedback. To investigate this, male Sprague‐Dawley rats were fed a standard (low fat) chow diet, or one of two high‐energy diets varying in fat content (45 or 60 kcal%) for 28 weeks. Intake of sucrose and fructose solutions, two commonly added sugars in the Western diet, was then tested in nondeprived rats following administration of the GLP‐1 receptor agonist, Exendin‐4 (0, 0.5, 1, 2, 3 µg/kg; s.c.). Exendin‐4 dose‐dependently reduced short (2 h) sucrose and fructose intake. This effect was significantly attenuated in rats fed more dietary fat, despite both diets resulting in obesity. These findings demonstrate that intake of carbohydrates when offered as treats can be regulated by GLP‐1 and suggests that dietary fat consumption, rather than extra calories or obesity, may lead to impaired GLP‐1 feedback to curb carbohydrate intake. Future studies are warranted to investigate the relevance of these observations to humans and to elucidate the underlying mechanisms.  相似文献   

16.
A high number of neurons express c-fos in response to unlimited food intake in fasted rats in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMHv). We report here, that in same conditions, limited food consumption failed to induce Fos expression in DMHv neurons suggesting that satiation should be one of the important signals that activate these neurons. The possible origin of fibers conducting satiation signals to the DMHv could be in the lower brainstem, especially glucagon-like peptide-1 (GLP-1)-containing neurons in the nucleus of the solitary tract (NTS). We demonstrate that GLP-1-immunoreactive fibers and fiber terminals topographically overlap with activated Fos-positive neurons in the DMHv in refed rats. Using immunocytochemistry and in situ hybridization histochemistry, we demonstrated GLP-1 receptors in Fos-expressing neurons of the DMH. Unilateral transections of ascending GLP-1-containing fibers from the NTS inside the pons in refed rats (unlimited food consumption) resulted in a dramatic decrease in the density of GLP-1 fibers and in the number of Fos-immunoreactive neurons in the DMHv, but only on the side of the transection. Contralateral to the transection, neither the GLP-1 fiber density nor the number of Fos-positive cells changed significantly. Meanwhile, the density of GLP-1 immunoreactivity was markedly accumulated in transected nerve fibers caudal to the cuts, as a consequence of the interruption of the ascending GLP-1 transport route. These findings suggest that the solitary-hypothalamic projections may represent the neuronal route through GLP-1 neurons of the NTS activate DMHv neurons via GLP-1 receptors by conveying information on satiety.  相似文献   

17.
Zhao L  Ye H  Li D  Lao X  Li J  Wang Z  Xiao L  Wu Z  Huang J 《Regulatory peptides》2012,173(1-3):1-5
Tyrosyl O-sulfation is a common posttranslational derivatization of proteins that may also modify regulatory peptides. Among these are members of the cholecystokinin (CCK)/gastrin family. While sulfation of gastrin peptides is without effect on the bioactivity, O-sulfation is crucial for the cholecystokinetic activity (i.e. gallbladder emptying) of CCK peptides. Accordingly, the purification of CCK as a sulfated peptide was originally monitored by its gallbladder emptying effect. Since then, the dogma has prevailed that CCK peptides are always sulfated. The dogma is correct in a semantic context since the gallbladder expresses only the CCK-A receptor that requires sulfation of the ligand. CCK peptides, however, are also ligands for the CCK-B receptors that do not require ligand sulfation. Consequently, unsulfated CCK peptides may act via CCK-B receptors. Since in vivo occurrence of unsulfated products of proCCK with an intact α-amidated C-terminal tetrapeptide sequence (-Trp-Met-Asp-PheNH(2)) has been reported, it is likely that unsulfated CCK peptides constitute a separate hormone system that acts via CCK-B receptors. This review discusses the occurrence, molecular forms, and possible physiological as well as pathophysiological significance of unsulfated CCK peptides.  相似文献   

18.
To help ensure an expanded healthy lifespan for as many people as possible worldwide, there is a need to prevent or manage a number of prevalent chronic diseases directly and indirectly closely related to aging, including diabetes and obesity. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have proven beneficial in type 2 diabetes, are amongst the few medicines approved for weight management, and are also licensed for focused cardiovascular risk reduction. In addition, strong evidence suggests several other beneficial effects of the pleiotropic peptide hormone, including anti-inflammation. Consequently, GLP-1 RAs are now in advanced clinical development for the treatment of chronic kidney disease, broader cardiovascular risk reduction, metabolic liver disease and Alzheimer's disease. In sum, GLP-1 RAs are positioned as one of the pharmacotherapeutic options that can contribute to addressing the high unmet medical need characterising several prevalent aging-related diseases, potentially helping more people enjoy a prolonged healthy lifespan.  相似文献   

19.
Glucagon-like peptide-1-(7---36) amide (GLP-1) is a potent incretin hormone secreted from distal gut. It stimulates basal and glucose-induced insulin secretion and proinsulin gene expression. The present study tested the hypothesis that GLP-1 may modulate insulin receptor binding. RINm5F rat insulinoma cells were incubated with GLP-1 (0.01-100 nM) for different periods (1 min-24 h). Insulin receptor binding was assessed by competitive ligand binding studies. In addition, we investigated the effect of GLP-1 on insulin receptor binding on monocytes isolated from type 1 and type 2 diabetes patients and healthy volunteers. In RINm5F cells, GLP-1 increased the capacity and affinity of insulin binding in a time- and concentration-dependent manner. The GLP-1 receptor agonist exendin-4 showed similar effects, whereas the receptor antagonist exendin-(9---39) amide inhibited the GLP-1-induced increase in insulin receptor binding. The GLP-1 effect was potentiated by the adenylyl cyclase activator forskolin and the stable cAMP analog Sp-5, 6-dichloro-1-beta-D-ribofuranosyl-benzimidazole-3', 5'-monophosphorothioate but was antagonized by the intracellular Ca(2+) chelator 1,2-bis(0-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. Glucagon, gastric inhibitory peptide (GIP), and GIP-(1---30) did not affect insulin binding. In isolated monocytes, 24 h incubation with 100 nM GLP-1 significantly (P<0.05) increased the diminished number of high-capacity/low-affinity insulin binding sites per cell in type 1 diabetics (9,000+/-3,200 vs. 18,500+/-3,600) and in type 2 diabetics (15,700+/-2,100 vs. 28,900+/-1,800) compared with nondiabetic control subjects (25,100+/-2,700 vs. 26,200+/-4,200). Based on our previous experiments in IEC-6 cells and IM-9 lymphoblasts indicating that the low-affinity/high-capacity insulin binding sites may be more specific for proinsulin (Jehle, PM, Fussgaenger RD, Angelus NK, Jungwirth RJ, Saile B, and Lutz MP. Am J Physiol Endocrinol Metab 276: E262-E268, 1999 and Jehle, PM, Lutz MP, and Fussgaenger RD. Diabetologia 39: 421-432, 1996), we further investigated the effect of GLP-1 on proinsulin binding in RINm5F cells and monocytes. In both cell types, GLP-1 induced a significant increase in proinsulin binding. We conclude that, in RINm5F cells and in isolated human monocytes, GLP-1 specifically increases the number of high-capacity insulin binding sites that may be functional proinsulin receptors.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) plays a significant role in glucose homeostasis through its incretin effect on insulin secretion. However, GLP-1 also exhibits extrapancreatic actions, and in particular its possible influences on insulin sensitivity are controversial. To study the dynamic action of GLP-1 on insulin sensitivity, we applied advanced statistical modeling methods to study glucose disappearance in mice that underwent intravenous glucose tolerance test with administration of GLP-1 at various dose levels. In particular, the minimal model of glucose disappearance was exploited within a population estimation framework for accurate detection of relationships between glucose disappearance parameters and GLP-1. Minimal model parameters were estimated from glucose and insulin data collected in 209 anesthetized normal mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). Insulin secretion markedly increased, as expected, with increasing GLP-1 dose. However, minimal model-derived indexes, i.e., insulin sensitivity and glucose effectiveness, did not significantly change with GLP-1 dose. Instead, fractional turnover rate of insulin action [P2 = 0.0207 +/- 24.3% (min) at zero GLP-1 dose] increased steadily with administered GLP-1 dose, with significant differences at 10.4 nmol/kg (P2 = 0.040 +/- 15.5%, P = 0.0046) and 31.2 nmol/kg (P2 = 0.050 +/- 29.2%, P = 0.01). These results show that GLP-1 influences the dynamics of insulin action by accelerating insulin action following glucose challenge. This is a novel mechanism contributing to the glucose-lowering action of GLP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号