首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive immunity in response to virus infection involves the generation of Th1 cells, cytotoxic T cells, and antibodies. This type of immune response is crucial for the clearance of virus infection and for long-term protection against reinfection. Type I interferons (IFNs), the primary innate cytokines that control virus growth and spreading, can influence various aspects of adaptive immunity. The development of antiviral immunity depends on many viral and cellular factors, and the extent to which type I IFNs contribute to the generation of adaptive immunity in response to a viral infection is controversial. Using two strains (Cantell and 52) of the murine respiratory Sendai virus (SeV) with differential abilities to induce type I IFN production from infected cells, together with type I IFN receptor-deficient mice, we examined the role of type I IFNs in the generation of adaptive immunity. Our results show that type I IFNs facilitate virus clearance and enhance the migration and maturation of dendritic cells after SeV infection in vivo; however, soon after infection, mice clear the virus from their lungs and efficiently generate cytotoxic T cells independently of type I IFN signaling. Furthermore, animals that are unresponsive to type I IFN develop long-term anti-SeV immunity, including CD8+ T cells and antibodies. Significantly, this memory response is able to protect mice against challenge with a lethal dose of virus. In conclusion, our results show that primary and secondary anti-SeV adaptive immunities are developed normally in the absence of type I IFN responsiveness.  相似文献   

2.
IFNs protect from virus infection by inducing an antiviral state and by modulating the immune response. Using mice deficient in multiple aspects of IFN signaling, we found that type I and type II IFN play distinct although complementing roles in the resolution of influenza viral disease. Both types of IFN influenced the profile of cytokines produced by T lymphocytes, with a significant bias toward Th2 differentiation occurring in the absence of responsiveness to either IFN. However, although a Th1 bias produced through inhibition of Th2 differentiation by IFN-gamma was not required to resolve infection, loss of type I IFN responsiveness led to exacerbated disease pathology characterized by granulocytic pulmonary inflammatory infiltrates. Responsiveness to type I IFN did not influence the generation of virus-specific cytotoxic lymphocytes or the rate of viral clearance, but induction of IL-10 and IL-15 in infected lungs through a type I IFN-dependent pathway correlated with a protective response to virus. Combined loss of both IFN pathways led to a severely polarized proinflammatory immune response and exacerbated disease. These results reveal an unexpected role for type I IFN in coordinating the host response to viral infection and controlling inflammation in the absence of a direct effect on virus replication.  相似文献   

3.
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.  相似文献   

4.
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1?/? mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.  相似文献   

5.
Human coinfection with the helminth parasite Schistosoma mansoni and hepatitis B and hepatitis C viruses is associated with increased hepatic viral burdens and severe liver pathology. In this study we developed a murine S. mansoni/lymphocytic choriomeningitis virus (LCMV) coinfection model that reproduces the enhanced viral replication and liver pathology observed in human coinfections, and used this model to explore the mechanisms involved. Viral coinfection during the Th2-dominated granulomatous phase of the schistosome infection resulted in induction of a strong LCMV-specific T cell response, with infiltration of high numbers of LCMV-specific IFN-gamma-producing CD8+ cells into the liver. This was associated with suppression of production of the Th2 cytokines dominant during S. mansoni infection and a rapid increase in morbidity, linked to hepatotoxicity. Interestingly, the liver of coinfected mice was extremely susceptible to viral replication. This correlated with a reduced intrahepatic type I IFN response following virus infection. Schistosome egg Ags were found to suppress the type I IFN response induced in murine bone marrow-derived dendritic cells by polyinosinic-polycytidylic acid. These results suggest that suppression of the antiviral type I IFN response by schistosome egg Ags in vivo predisposes the liver to enhanced viral replication with ensuing immunopathological consequences, findings that may be paralleled in human schistosome/hepatotropic virus coinfections.  相似文献   

6.
Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1beta, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-alpha/beta, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.  相似文献   

7.
Adaptive cellular immunity is required to clear HSV-1 infection in the periphery. Myeloid dendritic cells (DCs) are the first professional Ag-presenting cell to encounter the virus after primary and secondary infection and thus the consequences of their infection are important in understanding the pathogenesis of the disease and the response to the virus. Following HSV-1 infection, both uninfected and infected human DCs acquire a more mature phenotype. In this study, we demonstrate that type I IFN secreted from myeloid DC mediates bystander activation of the uninfected DCs. Furthermore, we confirm that this IFN primes DCs for elevated IL-12 p40 and p70 secretion. However, secretion of IFN is not responsible for the acquisition of a mature phenotype by HSV-1-infected DC. Rather, virus binding to a receptor on the cell surface induces DC maturation directly, through activation of the NF-kappaB and p38 MAPK pathways. The binding of HSV glycoprotein D is critical to the acquisition of a mature phenotype and type I IFN secretion. The data therefore demonstrate that DCs can respond to HSV exposure directly through recognition of viral envelope structures. In the context of natural HSV infection, the coupling of viral entry to the activation of DC signaling pathways is likely to be counterbalanced by viral disruption of DC maturation. However, the parallel release of type I IFN may result in paracrine activation so that the DCs are nonetheless able to mount an adaptive immune response.  相似文献   

8.
9.
Certain virus infections depend on the presence of T cell help for the generation of primary CD8(+) T cell responses. However, the mechanisms that render these particular viral infections T cell help dependent is largely unknown. In this study, we compared CD8(+) T cell responses elicited by lymphocytic choriomeningitis virus infection, as prototype of a T cell help independent infection, with T cell help dependent CD8(+) T cell responses induced by vaccinia virus infection. In this paper, we show that a key parameter decisive for T cell help independence is the ability of an infectious agent to stimulate early and robust production of type I IFN. Experimental provision of type I IFN during VV infection rendered the ensuing CD8(+) T cell response completely T cell help independent. Our results support a model in which type I IFN has to be present during the first 3 d of Ag encounter and has to act directly on the responding CD8(+) T cells to promote their survival and effector differentiation. We show that type I IFN signaling on responding CD8(+) T cells induces profound upregulation of CD25 and increased IL-2 expression; however, neither this nor IL-15 accounts for the type I IFN effects on responding CD8(+) T cells. Thus, type I IFN can effectively replace the requirement of T cell help by directly promoting CD8(+) T cell survival and differentiation independent of the type I IFN-induced cytokines IL-2 and IL-15.  相似文献   

10.
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.  相似文献   

11.
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.  相似文献   

12.
13.
TLR signaling leads to dendritic cell (DC) maturation and immunity to diverse pathogens. The stimulation of TLRs by conserved viral structures is the only described mechanism leading to DC maturation after a virus infection. In this report, we demonstrate that mouse myeloid DCs mature normally after in vivo and in vitro infection with Sendai virus (SeV) in the absence of TLR3, 7, 8, or 9 signaling. DC maturation by SeV requires virus replication not necessary for TLR-mediated triggering. Moreover, DCs deficient in TLR signaling efficiently prime for Th1 immunity after infection with influenza or SeV, generating IFN-gamma-producing T cells, CTLs and antiviral Abs. We have previously demonstrated that SeV induces DC maturation independently of the presence of type I IFN, which has been reported to mature DCs in a TLR-independent manner. The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity. The revelation of this pathway should stimulate invigorating research into the mechanism for virus-induced DC maturation and immunity.  相似文献   

14.
Modified vaccinia Ankara (MVA) is an attenuated virus. MVA induces the production of IFN and Flt3-L (FL), which results in the expansion of dendritic cells (DC) and enhanced resistance against viral infections. We report on the interplay among IFN, FL, and DC in the resistance against heterologous virus after injection of neonatal mice with MVA. The induction of serum FL was tested on day 2, and the expansion of DC was tested 1 wk after treatment with MVA. At this time point the resistance against infection with heterologous virus was also determined. After MVA treatment, serum FL was enhanced, and DC, including plasmacytoid cells in spleen, were increased in number. Mice that lacked functional IFN type I and II systems failed to increase both the concentration of FL and the number of DC. Treatment with MVA enhanced resistance against HSV-1 in wild-type animals 100-fold, but animals without a functional IFN system were not protected. Transfer of CD11c(+) cells from MVA-treated mice into naive animals protected against lethal infection with HSV-1. Thus, although the increased resistance could be largely attributed to the increase in activation of IFN-producing plasmacytoid cells, this, in turn, depends on a complex interplay between the DC and T cell systems involving both FL and IFNs.  相似文献   

15.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

16.
As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5−/− and RIG-I−/− mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I−/− cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1−/− mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.  相似文献   

17.
IRF family proteins and type I interferon induction in dendritic cells   总被引:14,自引:0,他引:14  
Tailor P  Tamura T  Ozato K 《Cell research》2006,16(2):134-140
Dendritic cells (DC), although a minor population in hematopoietic cells, produce type I interferons (IFN) and other cytokines and are essential for innate immunity. They are also potent antigen presenters and regulate adaptive immunity. Among DC subtypes plasmacytoid DC (pDC) produce the highest amounts of type I IFN. In addition, pro- and anti-inflammatory cytokines such as IL-12 and IL-10 are induced in DC in response to Toll like receptor (TLR) signaling and upon viral infection. Proteins in the IRF family control many aspects of DC activity. IRF-8 and IRF-4 are essential for DC development. They differentially control the development of four DC subsets. IRF-8^-/- mice are largely devoid of pDC and CD8α^+ DC, while IRF-4^-/- mice lack CD4^+ DC. IRF-8^-/-, IRF4^-/-, double knock-out mice have only few CD8α CD4^-DC that lack MHC Ⅱ. IRF proteins also control type Ⅰ IFN induction in DC. IRF-7, activated upon TLR signaling is required for IFN induction not only in pDC, but also in conventional DC (cDC) and non-DC cell types. IRF-3, although contributes to IFN induction in fibroblasts, is dispensable in IFN induction in DC. Our recent evidence reveals that type Ⅰ IFN induction in DC is critically dependent on IRF-8, which acts in the feedback phase of IFN gene induction in DC. Type Ⅰ IFN induction in pDC is mediated by MyD88 dependent signaling pathway, and differs from pathways employed in other cells, which mostly rely on TLR3 and RIG-Ⅰ family proteins. Other pro-inflammatory cytokines are produced in an IRF-5 dependent manner. However, IRF-5 is not required for IFN induction, suggesting the presence of separate mechanisms for induction of type Ⅰ IFN and other pro-inflammatory cytokines. IFN and other cytokines produced by activated DC in turn advance DC maturation and change the phenotype and function of DC. These processes are also likely to be governed by IRF family proteins.  相似文献   

18.
Recent advances have shown that direct type I IFN signaling on T cells is required for their efficient expansion in response to viral infections in vivo. It is not clear which intracellular signaling molecule is responsible for this effect. Although STAT1 has been shown to mediate many of the type I IFN-dependent biological effects, its role in T cells remains uncertain in vivo. In this study, we demonstrated that STAT1 signaling in CD8 T cells was required for their efficient expansion by promoting the survival of activated CD8 T cells upon vaccinia viral infection in vivo, suggesting that the direct effect of type I IFNs on CD8 T cells is mediated by STAT1. Furthermore, effector CD8 T cells that lack STAT1 signaling did not survive the contraction phase to differentiate into long-lived memory cells. These results identify a critical role for type I IFN-STAT1 signaling in multiple stages of CD8 T cell response in vivo and suggest that strategies to activate type I IFN-STAT1 signaling pathway may enhance vaccine potency.  相似文献   

19.
The role of type I IFN signaling in CD8 T cells was analyzed in an adoptive transfer model using P14 TCR transgenic CD8 T cells specific for lymphocytic choriomeningitis virus (LCMV) but deficient in type I IFNR. In the present study, we demonstrate severe impairment in the capacity of P14 T cells lacking type I IFNR to expand in normal type I IFNR wild-type C57BL/6 hosts after LCMV infection. In contrast, following infection of recipient mice with recombinant vaccinia virus expressing LCMV glycoprotein, P14 T cell expansion was considerably less dependent on type I IFNR expression. Lack of type I IFNR expression by P14 T cells did not affect cell division after LCMV infection but interfered with clonal expansion. Thus, direct type I IFN signaling is essential for CD8 T cell survival in certain viral infections.  相似文献   

20.
The role of type I interferon production by dendritic cells in host defense   总被引:6,自引:0,他引:6  
Type I interferons (IFN) and dendritic cells (DC) share an overlapping history, with rapidly accumulating evidence for vital roles for both production of type 1 IFN by DC and the interaction of this IFN both with DC and components of the innate and adaptive immune responses. Within the innate immune response, the plasmacytoid DC (pDC) are the "professional" IFN producing cells, expressing specialized toll-like receptors (TLR7 and -9) and high constitutive expression of IRF-7 that allow them to respond to viruses with rapid and extremely robust IFN production; following activation and production of IFN, the pDC subsequently mature into antigen presenting cells that help to shape the adaptive immune response. However, like most cells in the body, the myeloid or conventional DC (mDC or cDC) also produce type I IFNs, albeit typically at a lower level than that observed with pDC, and this IFN is also important in innate and adaptive immunity induced by these classic antigen presenting cells. These two major DC subsets and their IFN products interact both with each other as well as with NK cells, monocytes, T helper cells, T cytotoxic cells, T regulatory cells and B cells to orchestrate the early immune response. This review discusses some of the converging history of DC and IFN as well as mechanisms for IFN induction in DC and the effects of this IFN on the developing immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号