首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Graded doses of ochratoxin A incorporated into the diet (0, 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/g) of broiler chickens significantly (P < 0.05) inhibited activity of protein kinase, the initiator enzyme of the glycogen phosphorylase system, in the livers at all dose levels. Only the highest dose, 8.0 micrograms/g, significantly reduced the total activity of phosphorylase kinase, which is activated by protein kinase. The total activity of phosphorylase, which is activated by phosphorylase kinase, was unaltered by ochratoxin A at any level. Additon of ochratoxin A to liver extracts control birds inhibited protein kinase but not phosphorylase kinase. When added to extracts of livers from control birds, cyclic adenosine 3',5'-monophosphate stimulated protein kinase but not phosphorylase kinase. The cyclic adenosine 3',5'-monophosphate had no effect when added to extracts from birds fed ochratoxin A. These results suggest that ochratoxin A affects primarily the cyclic adenosine 3',5'-monophosphate-dependent protein kinase which initiates the enzymatic cascade leading to glycogenolysis. Furthermore, these results conform an earlier assignment on morphological criteria of the glycogenosis of ochratoxicosis as a type X glycogen storage disease.  相似文献   

2.
Isolated livers from fed and fasted rats were perfused for 30 min with recirculating blood-buffer medium containing no added substrate and then switched to a flow-through perfusion using the same medium for an additional 5, 10 and 30 min. Continuous infusion of fructose for the final 5, 10 or 30 min resulted in activation of glycogen phosphorylase, an increase in the activity of protein kinase, elevated levels of tissue adenosine 3', 5'-monophosphate (cyclic AMP), and no consistent effect on glycogen synthase. Infusion of glucose under the same conditions resulted in activation of glycogen synthase, inactivation of glycogen phosphorylase, no change in protein kinase, and no consistent change in tissue cyclic AMP. These results demonstrate that while glucose promotes hepatic glycogen synthesis, fructose promotes activation of the enzymatic cascade responsible for glycogen breakdown.  相似文献   

3.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was assayed with calf thymus histone as substrate and partially purified from the soluble fraction of bovine cerebellum. The enzyme was selectively activated by cyclic GMP at lower concentrations; the Ka value for cyclic GMP was 1.7 times 10- minus 8 M whereas that for adenosine 3':5'-monophosphate (cyclic AMP) was 1.0 times 10- minus 6 M. The Km value for ATP was 1.0 times 10- minus 5 M. A high concentration of Mg-2+ (100 mM) was needed for maximum stimulation by cyclic GMP and maximum reaction rate. The pH optimum was 7.5 to 8.0. The isoelectric point was pH 5.7. The molecular weight was about 140,000 as estimated by gel filtration. The enzyme was unable to activate muscle glycogen phosphorylase kinase, and was clearly distinguishable from cyclic AMP-dependent protein kinase in kinetic and catalytic properties. Comparative data on cyclic GMP-dependent and cyclic AMP-dependent protein kinases in this tissue are presented.  相似文献   

4.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen, increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3',5'-monophosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity. In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

5.
Crude extracts of rabbit liver, preincubated to promote the dephosphorylation of enzymes or other regulatory proteins, were used to study the role of cyclic AMP in the activation of glycogen phosphorylase. Inasmuch as endogenous liver phosphorylase was irreversibly altered by the preincubation procedure, crystalline skeletal muscle phosphorylase was used as the substrate in these studies. In the presence of magnesium ions and ATP, phosphorylase b was converted to phosphorylase a, and in an apparent biphasic process the phosphorylase a formed was subsequently converted to phosphorylase b. In the presence of adenosine 3':5'-monophosphate the rate of phosphorylase a formation and the maximal amount of phosphorylase a formed were increased. The cyclic AMP effect was enhanced by glucose-6-P and required the presence of glycogen. The catalytic subunit of cyclic AMP-dependent protein kinase could replace cyclic AMP in the stimulation of phosphorylase a formation. The effects of cyclic AMP or the catalytic subunit were shown to be due to stimulation of phosphorylase kinase rather than to inhibition of phosphorylase phosphatase. Preliminary fractionation experiments showed that it is possible to separate phosphorylase kinase catalytic activity from a factor or factors required for stimulation of its activation by the catalytic subunit.  相似文献   

6.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

7.
A cyclic nucleotide-independent protein kinase, which was produced from its proenzyme upon limited proteolysis by a Ca2+-dependent protease (Takai, Y., Yamamoto, M., Inoue, M., Kishimoto, A., & Nishizuka , Y. (1977) Biochem. Biophys. Res. Commun. 77, 542-550), showed an ability to phosphorylate not only muscle glycogen phosphorylase kinase but also glycogen synthase, resulting in activation and inactivation of the respective enzymes, although the protein kinase was less active than adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase toward glycogen synthase. Available evidence indicates that this new protein kinase shows pleiotropic functions apparently similar to those described for cyclic AMP-dependent protein kinase. Nevertheless, these protein kinases were clearly distinguishable from each other in their response to cyclic nucleotides and susceptibility to protein inhibitor.  相似文献   

8.
Protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) and cyclic adenosine 3',5'-monophosphate binding activities have been identified in zoospore extracts of the water mold Blastocladiella emersonii. More than 75% of these activities is found in the soluble fraction. Soluble protein kinase activity is resolved in three peaks(I, II and III) by DEAE-cellulose chromatography. Peak I is casein dependent and insensitive to cyclic AMP. Peak II is histone dependent and cyclic AMP independent; this enzyme is inhibited by the heat-stable inhibitor from bovine muscle. Peak III utilizes histone as substrate and is activated by cyclic AMP.  相似文献   

9.
Data are presented demonstrating that the presence in vivo of adenosine 3',5'-monophosphate (3',5'-AMP) causes a rapid depletion of glycogen storage material in the cellular slime mold. The effect of adenosine 5'-monophosphate (5'-AMP) is twofold, stimulating both glycogen degradation and synthesis. In pseudoplasmodia, cell-free extracts appear to contain at least two species of glycogen phosphorylase, one of which is severely inhibited by glucose-1-phosphate and another which is only partially inhibited by this hexose-phosphate. In some cases, 5'-AMP partially overcomes the inhibition by glucose-1-phosphate. Data presented here also indicate the existence of two forms of glycogen synthetase, the total activity of which does not change during 10 hr of differentiation from aggregation to culmination. During this period there is a quantitative conversion of glucose-6-phosphate-independent enzyme activity to glucose-6-phosphate-dependent activity. It is suggested that one effect of 3',5'-AMP is closely related to enzymatic processes involved in the rapid conversion of glycogen to cell wall material and other end products accumulating during sorocarp construction.  相似文献   

10.
Isolated livers from fed and fasted rats were perfused for 30 min with recirculating blood-buffer medium containing no added substrate and then switched to a flow-through perfusion using the same medium for an additional 5, 10 and 30 min. Continous infusion of fructose for the final 5, 10 or 30 min resulted in activation of glycogen phosphorylase, an increase in the activity of protein kinase, elevated levels of tissue adenosine 3′,5′-monphosphate (cylic AMP), and no consistent effect on glycogen synthase. Infusion of glucose under the same conditions resulted in activation of glycogen synthase, inactivation of glycogen phosphorylase, no change in protein kinase, and no consistent change in tissue cyclic AMP. These results demonstrate that while glucose promotes hepatic glycogen synthesis, fructose promotes activation of the enzymatic cascade responsible for glycogen breakdown.  相似文献   

11.
A binding protein specific for cyclic guanosine 3':5'-monophosphate (cyclic GMP) has been partially purified from extracts of the eubacterium Caulobacter crescentus and resolved from cyclic adenosine 3':5'-monophosphate (cyclic AMP)-binding activity. Binding of cyclic GMP is not affected by the addition of cyclic AMP or 5'-GMP, but is inhibited about 50 percent by a 50-fold molar excess of dibutyryl cyclic GMP or cyclic hypoxanthine 3':5'-monophosphate. The apparent dissociation constant for the cyclic GMP-binding protein complex is 1.1 X 10(-6) M.  相似文献   

12.
Addition of 10 micron of the alpha-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3',5'-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 micron phentolamine and were absent in cells incubated at pH 7.4. The same unexplained dependency of extracellular pH was observed with 2.5 nM--2.5 micron glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase. The effects of 5 micron isoproterenol or 5 micron epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 micron propranolol, whereas 10 micron phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The beta-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase. Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP dependent protein kinase also being active in this phosphorylation.  相似文献   

13.
Cytoplasmic and nuclear protein kinase activities from perfused rat liver have been studied in response to dibutyryl-adenosine cyclic 3':5'-monophosphate added at a concentration that stimulates hepatic gluconeogenesis (100 muM). Total nuclear protein kinase, as assayed using a mixed histone fraction as phosphate acceptor, is increased by 5-fold within 8 min of the addition of cyclic nucleotide to the perfusate. In contrast the total cytoplasmic protein kinase activity is decreased to 50% of the control value. The protein substrate specificity of the protein kinase that is present in the nucleus in response to dibutyryl-adenosine cyclic 3':5'-monophosphate stimulation is similar to that of cytoplasmic, adenosine cyclic 3':5'-monophosphate-dependent, protein kinase but is distinct from that of the enzyme(s) present in control nuclei. The predominant species to protein kinase from stimulated nuclei has a sedimentation constant of 3.9 S. This value is identical to that of the catalytic subunit of cytoplasmic adenosine 3':5'-monophosphate-dependent protein kinase. These data suggest that some of the effects of adenosine 3':5'-monophosphate on nuclear events may be mediated through its interaction with the inactive protein kinase holoenzyme in the cytoplasm and the subsequent redistribution of the active catalytic subunits generated by this interaction.  相似文献   

14.
Guanosine 3':5'-monophosphate(cyclic GMP)-dependent protein kinase which catalyzes the phosphorylation of histone was purified about 200-fold from the soluble fraction of pig lung by pH 5.5 precipitation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. The apparent Ka values for guanosine 3':5'-monophosphate and adenosine 3':5'-monophosphate were determined to be about 17 and 360 nM, respectively. Mg2+ was essential for the activity exhibiting biphasic stimulation behavior and neither Mn2+ nor Ca2+ could substitute for Mg2+. However, these divalent ions markedly inhibited the protein kinase activity stimulated by cyclic GMP in the presence of Mg2+.  相似文献   

15.
Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity.  相似文献   

16.
Extracts of rat tissues contain kinases which catalyze the conversion of glycogen synthease from the glucose 6-phosphate-independent (I) form to the glucose 6-phosphatate-dependent (D) form. These kinases were stimulated by adenosine 3':5' monophosphate (cyclic AMP). The glycogen synthase kinase activity ratio (activity in the absence of cyclic AMP divided by activity in the presence of cyclic AMP) varied from 0.28 to 0.97. The activity ratio for histone kinase in the same extracts ranged from 0.11 to 0.29. The levels of glycogen synthase kinase varied by a factor of 80 in the following rat tissues (given in order of decreasing enzyme activity): kidney, liver, stomach mucosa, lung, brain, heart, skeletal muscle, and adipose tissue. In the same tissues the levels of histone kinase varied by only a factor of 6 and did not correlate with the levels of glycogen synthase kinase. A modification of the method of Walsh et al. ((1971) J. Biol. Chem. 246, 1977-1985) was developed for purification of the heat-stable inhibitor of cyclic AMP-dependent protein kinases (inhibitor). The modified procedure resulted in good yields of highly purified inhibitor and was much simpler than the previously described procedure. This inhibitor completely inhibited cyclic AMP-dependent histone kinase activity of the extracts but much of the glycogen synthase kinase activity was not inhibited. The portion of glycogen synthase kinase that was insensitive to the inhibitor was: stomach mucosa, 95%; brain, 90%; liver, 82%; kidney, 81%; lung, 68%; adipose tissue, 65%; skeletal muscle, 63%; and heart, 54%. This histone kinase activity in the extracts and hte ratio of glycogen synthase kinase to histone kinase activity of purified catalytic subunit of the cyclic AMP-dependent protein kinase was used to calculate for each extract the glycogen synthase kinase activity contributed by the cyclic AMP-dependent protein kinase. Based on these calculations, the portion of the glycogen synthase kinase which was due to kinases independent of cyclic AMP was: kidney, 97%; liver, 91%; lung, 89%; brain, 87%, heart, 85%; stomach mucosa, 84%; adipose tissue, 38%; and skeletal muscle, 33%. A significant portion of the glycogen synthase kinase activity, but virtually none of the cyclic AMP-dependent histone kinase activity, of these extracts could be adsorbed to phosphocellulose columns. Liver extracts contained, in addition, a form of glycogen synthase kinase which was not adsorbed to phosphocellulose and which could be separated from the cyclic AMP-dependent protein kinase by additional chromatography. These studies demonstrate that kinases independent of cyclic AMP account for most of the glycogen synthase kinase activity of many tissues. The widespread distribution and high concentrations of these enzymes suggest that they are of physiological importance.  相似文献   

17.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) partially purified from silkworm pupae was selectively activated by cyclic GMP at lower concentrations. Nevertheless, the enzyme seemed to differ from adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) with respect to the mode of response to cyclic nucleotides. The catalytic activity and cyclic GMP-binding activity were not dissociated by cyclic GMP in a manner similar to that described for protein kinase A. The enzyme was not inhibited by regulatory subunit of protein kinase A nor by protein inhibitor. A sulfhydryl compound such as 2-mercaptoethanol or glutathione was essential for the activation by cyclic GMP, and an extraordinary high concentration of either Mg2+ (100 mM) or Mn2+ (25 mM) was needed for maximal stimulation by cyclic GMP. A polyamine such as spermine, spermidine, or putrescine could substitute partly for the cation. Kinetic analysis indicated that Km for ATP was decreased whereas Ka for cyclic GMP was increased significantly at high concentrations of the cation. The effect of the cation to decrease Km for ATP was not evident in the absence of a sulfhydryl compound. These characteristics of protein kinase G described above were not observed for protein kinase A which was obtained from the same organism.  相似文献   

18.
Two heat-stable and trypsin-labile inhibitors of phosphorylase phosphatase, designated inhibitor-1 and inhibitor-2, were partially purified from extracts of rabbit skeletal muscle by heating and coloumn chromatography using DEAE-dellulose and Bio-gel P-60. Inhibitor-1 exists in an active phosphorylated form and an inactive dephosphorylated form. The interconversion of phosphorylated inhibitor-1 and dephosphorylated inhibitor-1 is mediated by protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and a Mn2+-stimulated phosphoprotein phosphatase. Inhibitory activity of inhibitor-2 is not influenced by treatment with either the kinase or the Mn2+-stimulated phosphatase. The molecular weights of inhibitor-1 and inhibitor-2 estimated by sodium dodecylsulfate-polyacrylamide gel electrophoresis are 26000 and 33000 respectively. Both inhibitor-1 and inhibitor-2 inhibit phosphorylase phosphatase by a mechanism which appears to be non-competitive with respect to the substrate phosphorylase a. Inhibitor fractions at early stages of purification also inhibit cyclic-AMP-dependent histone phosphorylation, but this kinase inhibitory activity resides with a protein moiety which is separable from inhibitor-1 and inhibitor-2.  相似文献   

19.
Guanosine 3',5'-monophosphate (cyclic GMP)-dependent protein kinase purified from silkworm pupae reacts with rat liver ribosomal proteins when a stimulatory modulator (Kuo, W.N. & Kuo, J.F. 1976) J. Biol. Chem. 251, 4283-4286) is added to the reaction mixture. Judging from autoradiogram of the radioactive proteins separated by electrophoresis on sodium dodecyl sulfate-polyacrylamide slab gel, the protein kinase utilizes the same proteins as those phosphorylated by adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase. Fingerprint maps of the tryptic phosphopeptides of radioactive ribosomal proteins, which are phosphorylated by these two classes of protein kinases, are very similar. These results suggest that cyclic GMP-dependent protein kinase possesses an intrinsic activity that is similar to that of cyclic AMP-dependent protein kinase.  相似文献   

20.
The protein kinase associated with virions of frog virus 3 was purified to apparent homogeneity by ion exchange chromatography and gel filtration. The enzyme protein appeared as a single polypeptide of molecular weight 50,000 to 55,000 as determined by gel filtration, glycerol gradient sedimentation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and comprised approximately 0.4% of the total virion protein. The activity was classified as a cyclic nucleotide-independent protein kinase as it was not effected by cyclic adenosine 3':5'-monophosphate, cyclic guanosine 3':5'-monophosphate, or inhibited by a cyclic nucleotide-dependent protein kinase inhibitor protein, and utilized GTP as well as ATP as a phosphate donor. The greatest rates of phosphorylation were obtained with acidic phosphoprotein substrates such as casein or phosvitin, although potential physiological substrates for this activity included specific virion polypeptides of frog virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号