首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synovial fibroblasts (SFs) have become a major target for ex vivo gene transfer in rheumatoid arthritis (RA), but efficient transduction of RA-SFs still is a major problem. The low proliferation rate and heterogeneity of RA-SFs, together with their lack of highly specific surface receptors, have hampered a more extensive application of this technique. Improving transduction protocols with conventional viral vectors, therefore, as well as developing novel strategies, such as alternative target cells, and novel delivery systems constitute a major challenge. Recent progress in this field will lead to the achievement of high transgene expression, and will facilitate the use of gene transfer in human trials.  相似文献   

2.
BACKGROUND: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. METHODS: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. RESULTS: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. CONCLUSION: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted.  相似文献   

3.
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications.  相似文献   

4.
There is growing evidence that activated synovial fibroblasts, as part of a complex cellular network, play an important role in the pathogenesis of rheumatoid arthritis. In recent years, significant progress has been made in elucidating the specific features of these fibroblasts. It has been understood that although macrophage and lymphocyte secreted factors contribute to their activation, rheumatoid arthritis synovial fibroblasts (RA-SFs) do not merely respond to stimulation by pro-inflammatory cytokines, but show a complex pattern of molecular changes also maintained in the absence of external stimulation. This pattern of activation is characterized by alterations in the expression of regulatory genes and signaling cascades, as well as changes in pathways leading to apoptosis. These together result in the upregulation of adhesion molecules that mediate the attachment of RA-SFs to the extracellular matrix and in the overexpression of matrix degrading enzymes that mediate the progressive destruction of the joints. In addition, activated RA-SFs exert specific effects on other cell types such as macrophages and lymphocytes. While the initiating step in the activation of RA-SFs remains elusive, several key pathways of RA-SF activation have been identified. However, there is so far no single, specific marker for this phenotype of RA-SF. It appears that activated RA-SFs are characterized by a set of specific properties which together lead to their aggressive behavior.  相似文献   

5.
There is growing evidence that activated synovial fibroblasts, as part of a complex cellular network, play an important role in the pathogenesis of rheumatoid arthritis. In recent years, significant progress has been made in elucidating the specific features of these fibroblasts. It has been understood that although macrophage and lymphocyte secreted factors contribute to their activation, rheumatoid arthritis synovial fibroblasts (RA-SFs) do not merely respond to stimulation by pro-inflammatory cytokines, but show a complex pattern of molecular changes also maintained in the absence of external stimulation. This pattern of activation is characterized by alterations in the expression of regulatory genes and signaling cascades, as well as changes in pathways leading to apoptosis. These together result in the upregulation of adhesion molecules that mediate the attachment of RA-SFs to the extracellular matrix and in the overexpression of matrix degrading enzymes that mediate the progressive destruction of the joints. In addition, activated RA-SFs exert specific effects on other cell types such as macrophages and lymphocytes. While the initiating step in the activation of RA-SFs remains elusive, several key pathways of RA-SF activation have been identified. However, there is so far no single, specific marker for this phenotype of RA-SF. It appears that activated RA-SFs are characterized by a set of specific properties which together lead to their aggressive behavior.  相似文献   

6.
Retrovirus-mediated gene transfer is currently limited by random Brownian motion of the retrovirus. This limitation can be overcome by flowing the retrovirus solution through a porous membrane that supports the target cells, leading to a significant increase in the transduction efficiency. This procedure is termed "flow-through transduction." In this study, we characterized the effects of the fluid flowrate and the influence that membrane characteristics have on the flow-through transduction procedure. The transduction efficiencies increased with flowrate until a plateau was reached at average flow velocities exceeding 0.3 cm/h for flow times of 3 to 4 h, using a collagen-coated depth (COL) membrane. A correlation between the optimal time for maximal gene transfer using flow-through transductions and the optimal time for maximal virus activity on the membrane was found, suggesting that the membrane adsorption capacity for virus determined the amount of gene transfer that could occur.Membrane adsorption characteristics were further investigated using two different membrane types: a tracketched polyester screen (PE) membrane and the COL membrane. Flow-through transductions using the PE and COL membranes showed that a high level of gene transfer could be attained using the COL membrane while the PE membrane gave much lower transduction efficiencies. The addition of the polycation polybrene (PB) changed these results markedly, making transductions achieved on the PE membrane similar in number to those obtained on the COL membrane. Since PB is believed to influence the virus adsorption to PE membrane, these results further support the conclusion that the increase in gene transfer achieved by the flow-through transduction procedure is due to virus adsorption to the membrane. The flow-through transduction procedure thus leads to co-localization of the viral vector and the target cell that in turn leads to a high transduction efficiency. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
We used a combination of mathematical modeling and experiments to investigate the rate-limiting steps of retroviral transduction on surface-bound fibronectin (FN) and identify the conditions that maximize the efficiency of gene transfer. Our results show that fibronectin-assisted gene transfer (FAGT) is a strong function of the time and temperature of virus incubation in FN-coated plates. Gene transfer increases sharply at short times, reaches a maximum at intermediate times, and eventually declines as a result of loss of retroviral activity. The maximum transduction efficiency and the time at which this is attained increase with decreasing temperature of virus incubation. Depending on the temperature and the type of target cells, the initial rate of gene transfer increases by 3- to 10-fold and the maximum transduction efficiency increases by 2- to 4-fold as compared to traditional transduction (TT). Interestingly, Polybrene (PB) inhibits FAGT in a dose-dependent manner by inhibiting binding of retrovirus to FN. In contrast to traditional transduction, FAGT yields higher than 10-fold transduction efficiencies with concentrated retrovirus stocks. Gene transfer is directly proportional to the concentration of the virus-containing medium with no sign of saturation for the range of concentrations tested. These results suggest that immobilization of recombinant retrovirus can be rationally optimized to yield high efficiency of gene transfer to primary cells and improve the prospect of gene therapy for the treatment of human disease.  相似文献   

8.
We have genetically modified filamentous bacteriophage to deliver genes to mammalian cells. In previous studies we showed that noncovalently attached fibroblast growth factor (FGF2) can target bacteriophage to COS-1 cells, resulting in receptor-mediated transduction with a reporter gene. Thus, bacteriophage, which normally lack tropism for mammalian cells, can be adapted for mammalian cell gene transfer. To determine the potential of using phage-mediated gene transfer as a novel display phage screening strategy, we transfected COS-1 cells with phage that were engineered to display FGF2 on their surface coat as a fusion to the minor coat protein, pIII. Immunoblot and ELISA analysis confirmed the presence of FGF2 on the phage coat. Significant transduction was obtained in COS-1 cells with the targeted FGF2-phage compared with the nontargeted parent phage. Specificity was demonstrated by successful inhibition of transduction in the presence of excess free FGF2. Having demonstrated mammalian cell transduction by phage displaying a known gene targeting ligand, it is now feasible to apply phage-mediated transduction as a screen for discovering novel ligands.  相似文献   

9.
Random peptide ligands displayed on viral capsids are emerging tools for selection of targeted gene transfer vectors even without prior knowledge of the potential target cell receptor. We have previously introduced adeno-associated viral (AAV)-displayed peptide libraries that ensure encoding of displayed peptides by the packaged AAV genome. A major limitation of these libraries is their contamination with wild-type (wt) AAV. Here we describe a novel and improved library production system that reliably avoids generation of wt AAV by use of a synthetic cap gene. Selection of targeted AAV vectors from wt-containing and the novel wt-free libraries on cell types with different permissivity for wt AAV2 replication suggested the superiority of the wt-free library. However, from both libraries highly specific peptide sequence motifs were selected which improved transduction of cells with moderate or low permissivity for AAV2 replication. Strong reduction of HeLa cell transduction compared to wt AAV2 and only low level transduction of non-target cells by some selected clones showed that not only the efficiency but also the specificity of gene transfer was improved. In conclusion, our study validates and improves the unique potential of virus display libraries for the development of targeted gene transfer vectors.  相似文献   

10.
Liu S  Mao Q  Zhang W  Zheng X  Bian Y  Wang D  Li H  Chai L  Zhao J  Xia H 《Bioscience reports》2009,29(2):103-109
The transduction efficiency of Ad (adenovirus) depends, to some extent, on the expression level of CAR (coxsackievirus and Ad receptor) of a target cell. The low level of CAR on the cell surface is a potential barrier to efficient gene transfer. To overcome this problem, PTD.AdeGFP (where eGFP is enhanced green fluorescent protein) was constructed by modifying the HI loop of Ad5 (Ad type 5) fibre with the Tat (trans-activating) PTD (protein transduction domain) derived from HIV. The present study showed that PTD.AdeGFP significantly improved gene transfer to multiple cell types deficient in expression of CAR. The improvement in gene transfer was not the result of charge-directed binding between the virus and the cell surface. Although PTD.AdeGFP formed aggregates, it infected target cells in a manner different from AdeGFP aggregates precipitated by calcium phosphate. In addition, PTD.AdeGFP was able to transduce target cells in a dynamin-independent pathway. The results provide some new clues as to how PTD.AdeGFP infects target cells. This new vector would be valuable in gene-function analysis and for gene therapy in cancer.  相似文献   

11.
A major hurdle to adenovirus (Ad)-mediated gene transfer is that the target issue lacks sufficient levels of receptors to mediate vector attachment via its fiber coat protein. Endothelial and smooth muscle cells are primary targets in gene therapy approaches to prevent restenosis following angioplasty or to promote or inhibit angiogenesis. However, Ad poorly binds and transduces these cells because of their low or undetectable levels of functional Ad fiber receptor. The Ad-binding deficiency of these cells was overcome by targeting Ad binding to alpha v integrin receptors that are sufficiently expressed by these cells. In order to target alpha v integrins, a bispecific antibody (bsAb) that comprised a monoclonal Ab to the FLAG peptide epitope, DYKDDDDK, and a monoclonal Ab to alpha v integrins was constructed. In conjunction with the bsAb, a new vector, AdFLAG, which incorporated the FLAG peptide epitope into its penton base protein was constructed. Complexing AdFLAG with the bsAb increased the beta-glucuronidase transduction of human venule endothelial cells and human intestinal smooth muscle cells by seven- to ninefold compared with transduction by AdFLAG alone. The increased transduction efficiency was shown to occur through the specific interaction of the complex with alpha v integrins. These results demonstrate that bsAbs can be successfully used to target Ad to a specific cellular receptor and thereby increase the efficiency of gene transfer.  相似文献   

12.
Gaucher disease and Fabry disease are lysosomal storage disorders characterized by the accumulation of sphingolipids. In both cases, the goal of gene therapy is to permanently provide tissues with enzyme levels allowing to avoid storage of the undigested substrates. Different gene therapy strategies must however be designed as Gaucher disease is due to a deficiency in the membrane-associated enzyme glucocerebrosidase, whereas Fabry disease is caused by a deficiency in the soluble enzyme alpha-galactosidase. Indeed, a soluble enzyme can be provided to tissues is trans by gene-modified cells whereas gene transfer has to target the most affected cells in the case of membrane-bound enzymes. Thus, in non-neurological Gaucher disease (type 1), the hematopoietic tissue has to be targeted as the deficiency affects the monocyte/macrophage lineage. Following promising preclinical studies, clinical protocols have been initiated to explore the feasibility and safety of retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with type 1 Gaucher disease. Although gene-marked cells were detected in vivo, the level of corrected cells was very low, a finding indicating that improved vectors along with partial myeloablation may be necessary. Here, lentiviral vectors should enable more gene transduction into the hematopoietic target cells. As concerns the diffuse neurological lesions in types 2 and 3 of Gaucher disease, they will probably be especially difficult to target by gene therapy because of the non soluble nature of glucocerebrosidase. Finally, over the last few years, Fabry disease has become a compelling target for gene therapy as an etiology-based treatment strategy. Indeed, several recent studies aiming at creating a large in vivo source of alpha-galactosidase have yielded positive long-term results in the Fabry knock-out mouse model.  相似文献   

13.
14.
15.
Retrovirus-mediated gene transfer is one of the most commonly used methods to deliver, integrate, and express the gene of interest because the retrovirus can insert the desired gene into the chromosome of the target cells with high stability. However, to deliver the gene successfully, the retrovirus requires active division to integrate reversely transcribed DNA into the chromosome of target cells. In this study, we focused on the effect of cell-cell contact inhibition on the efficiency of retroviral transduction with two anchorage-dependent cell lines: NIH 3T3 and 293 cells. These two cell lines have very different cell morphologies and growth patterns on surfaces. Human embryonic kidney epithelial 293 cells tend to stick together after dividing, while NIH 3T3 cells migrate to occupy available surface and spread. Experimental data indicate that the abatement of the transduction rate of 293 cells was initiated in the early stage of the culture, whereas effect of contact inhibition of NIH 3T3 cells on the transduction rate became dominating at the end of the culture period. Experimental results were also quantitatively illustrated by plotting normalized multiplicity of infection (MOI) versus normalized cell density. According to the outcomes, cell inoculation density plays an important role in optimizing the retroviral transduction rate. The optimal time of retroviral transduction should be confined to the accelerating growth phase for 293 cells and at the exponential growth phase for NIH 3T3 cells. The implication drawn from this study is that contact inhibition effect on retroviral transduction should be taken into account for large-scale gene transfer systems such as the microcarrier bioreactor.  相似文献   

16.
We have previously reported effective gene transfer with a targeted molecular conjugate adenovirus vector through the c-kit receptor in hematopoietic progenitor cell lines. However, a c-kit-targeted recombinant retroviral vector failed to transduce cells, indicating the existence of significant differences for c-kit target gene transfer between these two viruses. Here we demonstrate that conjugation of an adenovirus to a c-kit-retargeted retrovirus vector enables retroviral transduction. This finding suggests the requirement of endosomalysis for successful c-kit-targeted gene transfer. Furthermore, we show efficient gene transfer to, and high transgene expression (66%) in, CD34-selected, c-kit(+) human peripheral blood stem cells using a c-kit-targeted adenovirus vector. These findings may have important implications for future vector development in c-kit-targeted stem cell gene transfer.  相似文献   

17.
Recombinant retroviruses have been shown to bind to fibronectin (FN) and increase the efficiency of gene transfer to a variety of cell types. Despite recent work to optimize gene transfer on recombinant FN, the mechanism of retrovirus binding to FN and the interactions of target cells with the bound virus remain elusive. We investigated the roles of virus surface glycoprotein (gp70), cell-conditioned medium, and proteoglycans in mediating retrovirus binding to FN. We also examined the role of Polybrene (PB) in these interactions. We found that gp70 is not involved in retrovirus binding to FN. Immobilization of the virus, however, does not overcome its receptor requirement, and gp70 is still needed for successful gene transfer. Our results clearly show that retrovirus binds FN through virus-associated heparan sulfate (HS) and that binding is necessary for transduction without PB. Two distinct modes of gene transfer occur depending on PB: (i) in the presence of PB, retrovirus interacts directly with the target cells; and (ii) in the absence of PB, retrovirus binds to FN and target cells interact with the immobilized virus. PB may promote the former mode by interacting with the virus HS and reducing the negative charge of the viral particles. Interestingly, the latter mode is more efficient, leading to significantly enhanced gene transfer. A better understanding of these interactions may provide insight into virus-cell interactions and lead to a more rational design of transduction protocols.  相似文献   

18.
We have previously shown that the efficiency of retrovirus-mediated gene transfer is limited in part due to the presence of chondroitin sulfate proteoglycans in virus stocks. In this study, we have used a model recombinant retrovirus encoding the Escherichia coli lacZ gene, bovine aorta chondroitin sulfate proteoglycan (CSPG), various free glycosaminoglycan chains (GAGs), and quantitative assays for retrovirus transduction to explore the mechanism by which proteoglycans and glycosaminoglycans inhibit retroviruses. We found that CSPG and GAGs block an early step in virus-cell interactions but do not act by inactivating viruses or by reducing the growth rate of the target cells. CSPG and most of the GAGs tested (chondroitin sulfate A, chondroitin sulfate B, heparin, heparan sulfate, and hyaluronic acid) inhibited transduction, but with widely varying degrees of activity. The chemical structure of GAGs was found to be an important determinant of their inhibitory activity, which suggests that GAGs do not inhibit transduction simply because they are highly negatively charged polymers. When GAGs were used in combination with a cationic polymer (Polybrene), however, their inhibitory activity was neutralized, and interestingly, at optimal doses of GAG and Polybrene, transduction efficiency was actually enhanced by as much as 72%. In contrast, the inhibitory activity of CSPG, due to the influence of its core protein, was not substantially reduced by Polybrene. The importance of these findings to our understanding of retrovirus-cell interactions and to the development of more efficient retrovirus gene transfer protocols is discussed.  相似文献   

19.
Over the past dozen years, the majority of clinical gene therapy trials for inherited genetic diseases and cancer therapy have been performed using murine onco-retrovirus as the gene delivery vector. The earliest systems used were relatively inefficient in both the rates of transduction and expression of the transgene. Formidable obstacles inherent in the cell biology and/or the immunology of the target cell systems limited the efficacy of gene therapy for many target diseases. Development of novel retrovirus gene transfer systems that are in progress have begun to overcome these obstacles. Evidence of this progress is the recent successful functional correction of the immune T and B lymphocyte deficiency in patients with X-linked severe combined immunodeficiency (X-SCID) and adenosine deaminase (ADA)-deficient SCID following onco-retrovirus vector ex vivo transduction of autologous marrow stem cells [Science 296 (2002) 2410; Science 288 (2000) 669; N. Engl. J. Med. 346 (2002) 1185]. These achievements of prolonged clinical benefit from gene therapy were tempered by the finding of insertional mutageneses in two of the treated X-SCID patients [N. Engl. J. Med. 348 (2003) 255].  相似文献   

20.
Applications of bone marrow-derived mesenchymal stem cells in gene therapy have been hampered by the low efficiency of gene transfer to these cells. In current transduction protocols, retrovirus particles with foreign genes make only limited contact with their target cells by passive diffusion and have short life spans, thereby limiting the chances of viral infection. We theorized that mechanically agitating the virus-containing cell suspensions would increase the movement of viruses and target cells, resulting in increase of contact between them. Application of our mechanical agitation for transduction process has increased the absorption of retrovirus particles more than five times compared to the previous static method without changing cell growth rate and viability. The addition of a mechanical agitation step increased transduction efficiency to 42%, higher than that of any other previously-known static transduction protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号