首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sharma RP  He Q  Johnson VJ  Voss KA 《Cytokine》2003,24(5):226-236
Fumonisin B1 (FB1), a mycotoxin, is a potent inhibitor of ceramide synthase, and produces organ-, species-, and even gender-specific toxic responses in animals. The hepatotoxic response of FB1 in mice involves accumulation of free sphingoid bases and induction of inflammatory cytokines including tumor necrosis factor alpha (TNFalpha). The FB1-induced hepatotoxic responses were reduced in mice lacking TNFalpha receptor (TNFR) 1 or TNFR2. However, the hepatotoxicity was exacerbated in mice lacking TNFalpha. We therefore investigated the modulation of various other apoptotic signaling factors in TNFalpha-knockout (TKO) mice compared to wild-type (WT) strain after repeated daily subcutaneous injections of 2.25 mg/kg FB1 treatment for 5 days. Expression of various signaling genes in liver was evaluated by ribonuclease protection assay. Expression of CD95-ligand (FasL) was more than doubled in TKO animals after FB1 whereas it was unaltered in the WT group. FB1 did not alter CD95 expression in either strain; however, expressions of TRAIL, and downstream signaling factors FADD, TRADD, and caspase 8 were higher in FB1-treated TKO mice than in the corresponding WT animals. The TKO strain had a higher constitutive expression of apoptotic factors except CD95L. In addition to the CD95 and TNFalpha systems, the expression of apoptotic molecules bcl-2, b-myc, c-myc, bax, max, mad and IL1alpha was induced by FB1 in TKO mice to a greater extent than in WT animals; many of these factors also had a higher constitutive expression in TKO animals than WT mice. Results indicated that FB1 can induce CD95 modulated signaling when TNFalpha is absent. Differential constitutive expression of apoptotic genes in TKO mice may explain their increased sensitivity to FB1. These results are important in characterizing the modulating effect of TNFalpha on apoptotic signaling and in explaining the unexpected sensitivity of mice lacking this cytokine in response to hepatotoxic xenobiotics.  相似文献   

3.
Possible hepatoprotective effect of Curcuma longa and/or Nigella sativa against hepatotoxicity induced by coadministration of sodium valproate (SV) and paracetamol was studied. Rats were divided into 10 groups, control groups 1, 2, 3, and 4 received vehicles, C. longa (200 mg/kg, p.o.), N. sativa (250 mg/kg, p.o.), or both herbs for 21 days, respectively. Toxicity groups 5, 6, and 7 received SV (300 mg/kg, i.p.), paracetamol (1000 mg/kg, p.o.) for the last 4 days or both for 21 days, respectively. Protection groups 8, 9, and 10 received C. longa, N. sativa, or both, respectively, 1 h before the administration of both the drugs for 21 days. SV and/or paracetamol significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, relative liver/body weight ratio, malondialdehyde (MDA), tumor necrosis factor alpha (TNF‐α), and caspase‐3 (Casp‐3) while significantly decreased albumin, total protein, glutathione (GSH) reduced, GSH peroxidase, and superoxide dismutase (SOD). Preadministration of C. longa and/or N. sativa caused protective effect against the hepatotoxicity induced by both drugs.  相似文献   

4.
Fumonisin B1 (FB1) is a toxic mycotoxin produced by Fusarium verticillioides, predominantly present in corn. The principal biochemical responses of FB1 involve disruption of sphingolipid metabolism from the inhibition of ceramide synthesis leading to accumulation of free sphingoid bases, particularly sphinganine. The ability of FB1 to modulate signal transduction pathways plays a role in its toxicity. We recently reported that FB1 selectively and transiently activates protein kinase Calpha (PKCalpha) in porcine renal epithelial cells (LLC-PK1). The aim of current study was to investigate the effect of PKCalpha activation by FB1 on NF-kappaB activation and subsequently on TNFalpha gene expression and caspase 3 induction in LLC-PK1 cells. FB1 (1 micromol/L for 5 min) transiently activated PKCalpha and increased nuclear translocation of NF-kappaB, followed by their down-regulation at later time points. Preincubating the cells with the PKC inhibitor, calphostin C, prevented the activation of NF-kappaB by FB1. TNFalpha mRNA expression was increased after 15 min exposure to FB1 or the PKC activator, phorbol 12-myristate 13-acetate. In addition, an increase in caspase 3 activity was observed after addition of FB1 for 1 h. Calphostin C prevented both the FB1-induced increase in TNFalpha expression and caspase 3 activation. In summary, we hereby demonstrate that the FB1 activation of NF-kappaB and sequential induction of TNFalpha expression resulting in the subsequent increase in caspase 3 activity are all dependent on PKCalpha stimulation in LLC-PK1 cells.  相似文献   

5.
In this paper we show that tumor necrosis factor alpha (TNF alpha) and interferon gamma (IFN gamma) alter the expression of extracellular matrix receptors (integrins) in cultured human endothelial cells. Endothelial cells express at their surface integrins of the beta 1 and beta 3 groups that include receptors for fibronectin, collagen, laminin, and vitronectin. After treatment for 72 h with a combination of TNF alpha and IFN gamma, the level of the vitronectin receptor (alpha v beta 3) at the cell surface decreases by 70%, whereas the amounts of the beta 1 integrins remain unchanged. The decreased expression of the alpha v beta 3 complex at the cell surface is due to a selective effect of TNF alpha and IFN gamma on the regulation of the beta 3 subunit synthesis at the translational level. In fact, although the steady state levels of the mRNA for the beta 3 subunit are comparable in control and treated cells, the overall synthesis of the beta 3 subunit is decreased by a factor of 70%. No significant alteration of the synthesis of the companion alpha v subunit is detectable in cytokine-treated cells. As a consequence of the decreased expression of the receptor, cytokine-treated cells show decreased ability to adhere to vitronectin but adhere normally to fibronectin. These data show that two important inflammatory mediators, TNF alpha and IFN gamma, can modify the interaction of endothelial cells with the extracellular matrix by selectively altering the expression of specific cell surface integrin complexes.  相似文献   

6.
7.
Acetaminophen (APAP) is one of the most commonly used drugs for the safe and effective treatment of fever and pain. However, it is a well-established hepatotoxin. The objective of this study was to identify alternation in various genes in liver of mice after administration of low and high doses of APAP. Male C57BL/6J mice received APAP (30 or 300 mg/kg, i.p.). They were sacrificed after 6 hr and 24 hr for assessment of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), total RNA isolation, cDNA microarray analysis and histopathological analysis of liver injury. Low dose of APAP did not cause hepatotoxicity in mice. However, it was toxic at a high dose. Using microarray technology, we selected changed genes more than 1.5 fold. Gene expression changes were recorded even at a low dose treatment with APAP. Six (6) hr after APAP treatment at low dose, 6 genes were up-regulated and 25 genes were down-regulated. However, 24 hr after treatment at low dose 8 genes were up-regulated and 34 genes were down-regulated. 6 hr after of high dose treatment 29 genes were down-regulated and none was up-regulated. A 24 hr treatment with high dose up-regulated 6 genes and down-regulated 18 genes. These expression patterns provide information on high versus low dose mechanisms of APAP toxicity. Gene expression signatures recorded after a nontoxic dose of APAP strongly support the validity of gene expression changes as meaningful markers of hepatotoxicity.  相似文献   

8.
The effect of T-5224, a selective inhibitor of c-Fos/activator protein (AP)-1, on lipopolysaccharide (LPS) induced liver injury was examined in mice. Administration of LPS (10?mg?kg?1, i.p.) markedly increased serum levels of tumor necrosis factor-alpha (TNFα), high mobility group box 1 (HMGB1), alanine aminotransferase/aspartate aminotransferase (ALT/AST), liver tissue levels of macrophage-inflammatory protein-1 alpha (MIP-1α) and monocyte chemoattractant protein-1 (MCP-1), as well as hepatic necrosis and inflammation, leading to 67?% lethality. Administration of T-5224 (300?mg?kg?1, p.o.) after intraperitoneal injection of LPS imparted appreciable protection against acute elevations in serum levels of TNFα, HMGB1, ALT/AST as well as in liver tissue levels of MIP-1α and MCP-1, and reduced the lethality (27?%). These data indicate that T-5224 ameliorates liver injury and improves survival through decreasing production of proinflammatory cytokines and chemokines in endotoxemic mice.  相似文献   

9.
Agents that can arrest cellular proliferation are now providing insights into mechanisms of growth factor action and how this action may be controlled. It is shown here that the macrophage activating agents tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma), and lipopolysaccharide (LPS) can maximally inhibit colony stimulating factor-1 (CSF-1)-induced, murine bone marrow-derived macrophage (BMM) DNA synthesis even when added 8-12 h after the growth factor, a period coinciding with the G1/S-phase border of the BMM cell cycle. This inhibition was independent of autocrine PGE2 production or increased cAMP levels. In order to compare the mode of action of these agents, their effects on a number of other BMM responses in the absence or presence of CSF-1 were examined. All three agents stimulated BMM protein synthesis; TNF alpha and LPS, but not IFN gamma, stimulated BMM Na+/H+ exchange and Na+,K(+)-ATPase activities, as well as c-fos mRNA levels. IFN gamma did not inhibit the CSF-1-induced Na+,K(+)-ATPase activity. TNF alpha and LPS inhibited both CSF-1-stimulated urokinase-type plasminogen activator (u-PA) mRNA levels and u-PA activity in BMM, whereas IFN gamma lowered only the u-PA activity. In contrast, LPS and IFN gamma, but not TNF alpha, inhibited CSF-1-induced BMM c-myc mRNA levels, the lack of effect of TNF alpha dissociating the inhibition of DNA synthesis and decreased c-myc mRNA expression for this cytokine. These results indicate that certain biochemical responses are common to both growth factors and inhibitors of BMM DNA synthesis and that TNF alpha, IFN gamma, and LPS, even though they all have a common action in suppressing DNA synthesis, activate multiple signaling pathways in BMM, only some of which overlap or converge.  相似文献   

10.
11.
Aim of the study was to evaluate in vivo antioxidant action of medicinal herb Rhodococcum vitis-idaea (Rh.v) on galactosamine (GalN)-induced rat liver toxicity. The results showed that the hepatotoxicity and oxidative stress induced by GalN (700 mg/kg, s.c.) after 24 h evidenced by an increase in serum alanine aminotransferase and glutathione (GSH) S-transferase activities, and lipid peroxidation in liver homogenate were significantly inhibited, when 10 times diluted Rh.v. extract (5 ml/kg, i.p.) was given to rats 12 and 1 h before GalN treatment demonstrating that the extract of Rh.v is a potent antioxidant and protective against GalN-induced hepatotoxicity. The main antioxidant compound of the herb water extract used in the experiment was determined as arbutin, which possess 8% of dry weight of the herb. The electron spin resonance (ESR) spectrometer analysis revealed that the arbutin isolated from Rh.v exhibited strong superoxide and hydroxyl radical scavenging ability.  相似文献   

12.
13.
The underlined effects of diallyl sulfide (DAS) against CCL4‐induced oxidative, inflammatory, and apoptotic acute hepatic damage were assessed. Administration of DAS (50, 100, and 200 mg/kg) along with CCL 4 effectively mitigated serum aspartate aminotransferase, alanine aminotransferase activities, MDA, TNF‐α, IL‐1β, and MCP‐1 levels, as well as significantly restored HO‐1, GSH levels and SOD activity in liver tissues compared with those in rats treated with CCL 4. Moreover, DAS inhibited CCL 4‐induced increase of liver NF‐κB (p65), Bax, p38 MAPK, and JNK protein expression. In addition, DAS accelerated protein expression of Nrf2 and Bcl‐2. The hepatoprotective properties of DAS were further confirmed by the reduced severity of hepatic damage as demonstrated by histopathological findings. In conclusion, DAS achieved its protective potential against CCL4‐induced hepatotoxicity through antiapoptotic activity, as well as the synchronized modulation of NF‐κB and Nrf2 for the favor of antioxidant/anti‐inflammatory effects via suppression of the upstream stress‐activated MAPKs pathways.  相似文献   

14.
15.
In the present study, we investigated the cytotoxic mechanism of Fumonisin B1 (FB1) in mice colonic region in a time course manner. Herein, after consecutive 4 days of exposure to FBI (2.5 mg/kg body weight), we observed disintegration of mice colon, as evidenced by histopathological analysis. FB1 significantly increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities in serum and plasma, decreased ceramide level, increased sphinganine level, and increased lipid peroxidase level along with the breakdown of the antioxidant system. Further, FB1‐induced ER stress caused apoptosis and autophagy activation in mice colon, evidenced by increased expression of IRE1‐α, p‐JNK, Casp3, and LC3I/II. In addition, we also noticed a reduced protein kinase C expression in mice colon exposed to FB1, suggesting its role in ER stress‐induced cell death. Taken together, study suggests both physiologically and biochemically, FB1 toxicity to mice colon induced by oxidative stress‐associated apoptosis and autophagy activation.  相似文献   

16.
17.
18.
19.
20.
We have previously shown the importance of endogenous tumor necrosis factor (TNF) production for the curative effectiveness of low-dose melphalan (L-phenylalanine mustard) for mice bearing a large MOPC-315 tumor. In the current study we demonstrate that low-dose melphalan is actually associated with enhanced expression of mRNA for TNFα in the s.c. tumor nodule. Moreover, the expression of mRNA for interferon γ (IFNγ) and interleukin-12 (IL-12; p40) is also elevated at the tumor site. However, while elevation in the expression of mRNA for TNFα and IFNγ is evident within 24 h after the chemotherapy, elevation in the expression of mRNA for IL-12(p40) is first evident 72 h after the chemotherapy. Moreover, neutralizing anti-IFNγ mAb, like neutralizing anti-TNF mAb but not neutralizing anti-IL-12 mAb, reduced the curative effectiveness of low-dose melphalan for MOPC-315 tumor bearers. Studies into the mechanism through which IFNγ mediates its antitumor effect in low-dose-melphalan-treated MOPC-315 tumor-bearing mice revealed that MOPC-315 tumor cells, which are not sensitive to the direct antitumor effects of TNF, display some sensitivity to the antiproliferative activity of high concentrations of IFNγ. However, unlike TNFα, IFNγ is unable to promote the generation of anti-MOPC-315 cytotoxic T lymphocyte activity and, in fact, exerts an inhibitory activity on CTL generation. Taken together, our studies illustrate that low-dose melphalan therapy of MOPC-315 tumor bearers is associated with the rapid elevation in the expression of mRNA for IFNγ and TNF, two cytokines which are important for the curative effectiveness of low-dose melphalan, and which mediate their antitumor effect, in part, through distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号