首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Surfactant protein A (SP-A) and surfactant protein D (SP-D) are important components of innate immunity that can modify the inflammatory response. However, alterations and regulation of SP-A and SP-D in acute and chronic inflammation are not well defined. In addition, serum SP-D may serve as a biomarker of lung inflammation. We determined the expression of SP-A and SP-D in murine models. To study acute inflammation, we instilled bleomycin intrabronchially. To study chronic lung inflammation, we used a transgenic mouse that overexpresses tumor necrosis factor (TNF)-alpha under the control of the SP-C promoter. These mice have a chronic mononuclear cell infiltration, airspace enlargement, pulmonary hypertension, and focal pulmonary fibrosis. In acute inflammation model, levels of mRNA for all surfactant proteins were reduced after bleomycin administration. However, serum SP-D was increased from days 7 to 28 after instillation. In chronic inflammation model, SP-D mRNA expression was increased, whereas the expression of SP-A, SP-B and SP-C was reduced. Both serum and lung SP-D concentrations were increased in chronic lung inflammation. These data clarified profile of SP-A and SP-D in acute and chronic inflammation and indicated that serum SP-D can serve as a biomarker of lung inflammation in both acute and chronic lung injury in mice.  相似文献   

3.
Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.  相似文献   

4.
Surfactant protein D (SP-D) is a member of the collectin family of the innate host defense proteins. In the lung, SP-D is expressed primarily by type II cells. Gene-targeted SP-D-deficient [SP-D(-/-)] mice have three- to fivefold higher surfactant lipid pool sizes. However, surfactant synthesis and secretion by type II cells and catabolism by alveolar macrophages are normal in SP-D(-/-) mice. Therefore, we hypothesized that SP-D might regulate surfactant homeostasis by influencing surfactant structure, thereby altering its uptake by type II cells. Large (LA) and small aggregate (SA) surfactant were isolated from bronchoalveolar lavage fluid (BALF) from SP-D(-/-), wild-type [SP-D(+/+)], and transgenic mice in which SP-D was expressed under conditional control of doxycycline in alveolar type II cells. Uptake of both LA and SA isolated from SP-D(-/-) mice by normal type II cells was decreased. Abnormally dense lipid forms were observed by electron microscopy of LA from SP-D(-/-) mice. SA from SP-D(-/-) mice consisted of atypical multilamellated small vesicles. Abnormalities in surfactant uptake by type II cells and in surfactant ultrastructure were corrected by conditional expression of SP-D in vivo. Preincubation of BALF from SP-D(-/-) mice with SP-D changed surfactant ultrastructure to be similar to that of SP-D(+/+) mice in vitro. The rapid changes in surfactant structure, increased uptake by type II cells, and decreased pool sizes normally occurring in the postnatal period were not seen in SP-D(-/-) mice. SP-D regulates uptake and catabolism by type II cells and influences the ultrastructure of surfactant in the alveolus.  相似文献   

5.
Pretreatment with keratinocyte growth factor (KGF) ameliorates experimentally induced acute lung injury in rats. Although alveolar epithelial type II cell hyperplasia probably contributes, the mechanisms underlying KGF's protective effect remain incompletely described. Therefore, we tested the hypothesis that KGF given to rats in vivo would enhance alveolar epithelial repair in vitro by nonproliferative mechanisms. After intratracheal instillation (48 h) of KGF (5 mg/kg), alveolar epithelial type II cells were isolated for in vitro alveolar epithelial repair studies. KGF-treated cells had markedly increased epithelial repair (96 +/- 22%) compared with control cells (P < 0.001). KGF-treated cells had increased cell spreading and migration at the wound edge but no increase in in vitro proliferation compared with control cells. KGF-treated cells were more adherent to extracellular matrix proteins and polystyrene. Inhibition of the epidermal growth factor (EGF) receptor with tyrosine kinase inhibitors abolished the KGF effect on epithelial repair. In conclusion, in vivo administration of KGF augments the epithelial repair rate of alveolar epithelial cells by altering cell adherence, spreading, and migration and through stimulation of the EGF receptor.  相似文献   

6.
目的:探讨辛伐他汀对急性肺损伤大鼠囊性纤维化跨膜传导调节体(CFTR氯离子通道)的影响及其对减轻急性肺损伤的作用。方法:40只雄性SD大鼠随机分为空白组、模型组、辛伐他汀低剂量组(20 mg/kg)、辛伐他汀中剂量组(40 mg/kg)、辛伐他汀高剂量组(80 mg/kg);气道内滴注脂多糖(10 mg/kg)制备急性肺损伤模型。进行肺湿/干重比、肺泡灌洗液蛋白检测,HE染色观察肺组织的病理变化;实时荧光定量PCR检测肺组织匀浆CFTR mRNA表达。结果:结果显示,模型组的肺湿干重比,肺泡灌洗液蛋白较空白组高(P0.05),病理示肺泡膈增厚,大量炎性细胞浸润,肺泡腔内可见红细胞及血肿,提示模型复制成功。辛伐他汀低剂量组的肺湿/干重比、肺泡灌洗液蛋白与模型组相比无明显差异,病理可见肺损伤较重,与模型组相比无改善;CFTR mRNA表达与模型组相比稍高但无明显差异(P0.05)。辛伐他汀中高剂量组中肺湿/干重比、肺泡灌洗液蛋白与模型组相比有所降低,肺组织CFTRmRNA表达较模型组明显增加(P0.05),但中高剂量组之间无明显差异(P0.05);病理可见肺泡膈增厚,极少见炎性细胞浸润及透明膜,肺泡腔内未见明显出血和水肿,肺损伤程度较模型组减轻。结论:中高剂量的辛伐他汀(40 mg/kg)对急性肺损伤有一定保护作用,并上调CFTR的表达。  相似文献   

7.
Evidence derived from human and animal studies strongly supports the notion that dysfunctional alveolar epithelial cells (AECs) play a central role in determining the progression of inflammatory injury to pulmonary fibrosis. We formed the hypothesis that impaired production of the regulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by injured AECs plays a role in the development of pulmonary fibrosis. To test this hypothesis, we used the well-characterized model of bleomycin-induced pulmonary fibrosis in rats. GM-CSF mRNA is expressed at a constant high level in the lungs of untreated or saline-challenged animals. In contrast, there is a consistent reduction in expression of GM-CSF mRNA in the lung during the first week after bleomycin injury. Bleomycin-treated rats given neutralizing rabbit anti-rat GM-CSF IgG develop increased fibrosis. Type II AECs isolated from rats after bleomycin injury demonstrate diminished expression of GM-CSF mRNA immediately after isolation and in response to stimulation in vitro with endotoxin compared with that in normal type II cells. These data demonstrate a defect in the ability of type II epithelial cells from bleomycin-treated rats to express GM-CSF mRNA and a protective role for GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis.  相似文献   

8.
Exogenous application of keratinocyte growth factor protects the lung against a variety of injurious stimuli. KGF-treatment leads to pronounced hyperplasia of alveolar epithelial type II cells and to stabilization of surfactant homeostasis after lung injury. Epidermal fatty acid-binding protein is involved in the synthesis of surfactant phospholipids and acts as an antioxidant scavenging reactive lipids. We treated adult rats with recombinant human keratinocyte growth factor (Palifermin) via intratracheal instillation and analyzed the expression of epidermal fatty acid-binding protein mRNA and protein by quantitative RT-PCR, immunoblotting as well as immunohistochemistry. Keratinocyte growth factor-treatment in vivo leads to an increased expression of epidermal fatty acid-binding protein mRNA and protein in the total lung. Epidermal fatty acid-binding protein mRNA expression per alveolar epithelial type II cell remains constant as shown in isolated type II cells. Epidermal fatty acid-binding protein immunoreactivity is seen in most if not all hyperplastic alveolar epithelial type II cells, and is mainly localized to the cytoplasm. The increase in epidermal fatty acid-binding protein gene expression associated with type II cell hyperplasia might contribute to the molecular mechanisms mediating lung protection by keratinocyte growth factor.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) has been implicated in postnatal alveolar development, pulmonary fibrosis, and non-small cell lung cancer. To further investigate the role of IGF-I, we created a line of transgenic mice in which alveolar type II epithelial cells express human IGF-IA under the control of the surfactant protein C promoter. We determined the effect of pulmonary overexpression of human IGF-IA on 1) pulmonary inflammation and fibrosis in response to intratracheal instillation of bleomycin, 2) premalignant pulmonary adenomatous hyperplasia, and 3) adenoma formation. Transgenic expression of human IGF-IA had no effect on baseline gross lung pathology, cellularity of bronchoalveolar lavage, or total lung collagen content. In addition, there were no significant differences between transgenic mice and nontransgenic littermate controls in the development of pulmonary inflammation or pulmonary fibrosis in response to intratracheal bleomycin instillation. However, pulmonary expression of human IGF-IA in older mice (>12 mo) significantly increased the incidence of premalignant adenomatous hyperplastic lesions compared with littermate controls without affecting adenoma formation. These findings suggest that increased expression of human IGF-IA in alveolar air spaces does not affect the development of pulmonary fibrosis but promotes premalignant changes in the alveolar epithelium.  相似文献   

10.
Inhalation of silica leads to acute lung injury and alveolar type II cell proliferation. Type II cell proliferation after hyperoxic lung injury is regulated, in part, by parathyroid hormone-related protein (PTHrP). In this study, we investigated lung PTHrP and its effects on epithelial proliferation after injury induced by silica. Lung PTHrP decreased modestly 4 days after we instilled 10 mg of silica into rat lungs and then recovered from 4 to 28 days. The number of proliferating cell nuclear antigen (PCNA)-positive type II cells was increased threefold in silica-injured lungs compared with controls. Subsequently, rats were treated with four exogenous PTHrP peptides in the silica instillate, which were administered subcutaneously daily. One peptide, PTHrP-(38-64), had consistent and significant effects on cell proliferation. PTHrP-(38-64) increased the median number of PCNA-positive cells/field nearly fourfold above controls, 380 vs. 109 (P < 0.05). Thymidine incorporation was 2.5 times higher in type II cells isolated from rats treated with PTHrP-(38-64) compared with PBS. PTHrP-(38-64) significantly increased the number of cells expressing alkaline phosphatase, a type II cell marker. This study indicates that PTHrP-(38-64) stimulates type II cell growth and may have a role in lung repair in silica-injured rats.  相似文献   

11.
We employed the technique of dot blot hydridization of radiolabeled cDNA probes to examine the role of specific mRNA content in the control of extracellular matrix turnover in the remodeling rat lung. Following bleomycin instillation, total RNA content gradually doubled during the first 5 days following the initial lung injury, then rose much more rapidly during the ensuing 9 days. Individual mRNAs for procollagens I and III and for fibronectin were selectively enriched 2- to 4-fold above total RNA during the first week after bleomycin instillation. No comparable increases were observed in specific RNAs from liver, indicating that the response observed in the lung was not generalized to other organs. Moreover, the increases in mRNA species for procollagen types I or III in the lung could not be related to the influx of inflammatory cells which migrate into the lungs during acute injury, as cells obtained by alveolar lavage contained no mRNAs for procollagens.  相似文献   

12.
Surfactant protein D (SP-D) is a member of the collectin subfamily of C-type lectins, pattern recognition proteins participating in the innate immune response. Gene-targeted mice deficient in SP-D develop abnormalities in surfactant homeostasis, hyperplasia of alveolar epithelial type II cells, and emphysema-like pathology. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is required for terminal differentiation and subsequent activation of alveolar macrophages, including the expression of matrix metalloproteinases and reactive oxygen species, factors thought to contribute to lung remodeling. Type II cells also express the GM-CSF receptor. Thus we hypothesized GM-CSF might mediate some or all of the cellular and structural abnormalities in the lungs of SP-D-deficient mice. To test this, SP-D (D-G+) and GM-CSF (D+G-) single knockout mice as well as double knockout mice deficient for both SP-D and GM-CSF (D-G-) were analyzed by design-based stereology. Compared with wild type, D-G+ as well as D+G- mice showed decreased alveolar numbers, increased alveolar sizes, and decreased alveolar epithelial surface areas. These emphysema-like changes were present to a greater extent in D-G- mice. D-G+ mice developed type II cell hyperplasia and hypertrophy with increased intracellular surfactant pools, whereas D+G- mice had smaller type II cells with decreased intracellular surfactant pools. In contrast to the emphysematous changes, the type II cell alterations were mostly corrected in D-G- mice. These results indicate that GM-CSF-dependent macrophage activity is not necessary for emphysema development in SP-D-deficient mice, but that type II cell metabolism and proliferation are, either directly or indirectly, regulated by GM-CSF in this model.  相似文献   

13.
Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is an important cause of mortality in the human population. Despite significant advances made, the mortality associated with ALI remains unchanged. The objective of the present study was to evaluate the role of oxidative stress, alveolar antioxidant status and multiple organ injury in ARDS induced by lipopolysaccharide (LPS) in rats. Rats were divided into 4 groups, group I control rats were given saline intraperitoneally, whereas groups II, III and IV (LPS-treated) rats received an intraperitoneal injection of LPS (10 mg/kg body weight) and sacrificed after various time intervals. In LPS-treated rats, we observed increased levels of oxidative products, decreased levels of antioxidants in lung tissues and increased levels of serum marker enzymes, suggesting multiple organ injury. Bronchoalveolar lavage fluid (BALF) neutrophil content and protein concentration in LPS-treated rats were significantly elevated in a time-dependent manner. Histological studies revealed neutrophil influx and diffused alveolar damage in LPS-administered rats. These results clearly suggested that increased oxidant levels led to oxidative stress, antioxidant deficiency attenuating lung inflammation and tissue damage. LPS administration resulted in multiple organ failure, leading to increased mortality.  相似文献   

14.
15.
The Rad9-Hus1-Rad1 protein complex is believed to respond to DNA damage and play important roles in the cell cycle. We studied the role of Rad9 protein in alveolar epithelial cells in the pathogenesis of acute lung injury. In a mouse model of lung injury induced by bleomycin or lipopolysaccharide, Rad9 expression is increased in type II alveolar epithelial cells from the early stage of lung injury. A549 cells and mouse primary alveolar epithelial cells also upregulated Rad9 expression after exposure to bleomycin. Gene silencing of Rad9 using siRNA decreased the G2/M arrest in A549 cells induced by bleomycin and also decreased the survival of A549 cells following exposure to bleomycin and hydrogen peroxide. In conclusion, Rad9 is a signal in the earlier stage of epithelial cell cycle regulation and plays protective roles in alveolar epithelial cells in the pathogenesis of acute lung injury.  相似文献   

16.
Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing liposomes. Liposomes containing clodronate or PBS were instilled by intratracheal instillation. After 24 h, the mice received intratracheal instillations of the Fas-activating monoclonal antibody Jo2 or an isotype control antibody and were studied 18 h later. The Jo2 MAb induced increases in bronchoalveolar lavage fluid (BALF) total neutrophils, lung caspase-3 activity, and BALF total protein and worsened histological lung injury in the macrophage-depleted mice. Studies in vitro showed that Fas activation induced the release of the cytokine KC in a mouse lung epithelial cell line, MLE-12. These results suggest that the lung inflammatory response to Fas activation is not primarily dependent on resident alveolar macrophages and may instead depend on cytokine release by alveolar epithelial cells.  相似文献   

17.
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.  相似文献   

18.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells and could be a regulatory factor for alveolar epithelial cell proliferation after lung injury. We investigated lung PTHrP expression in rats exposed to 85% oxygen. Lung levels of PTHrP were significantly decreased between 4 and 8 days of hyperoxia, concurrent with increased expression of proliferating cell nuclear antigen and increased incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA in lung corner cells. PTHrP receptor was present in both normal and hyperoxic lung. To test whether the fall in PTHrP was related to cell proliferation, we instilled PTHrP into lungs on the fourth day of hyperoxia. Eight hours later, BrdU labeling in alveolar corner cells was 3.2 +/- 0.4 cells/high-power field in hyperoxic PBS-instilled rats compared with 0.5 +/- 0.3 cells/high-power field in PTHrP-instilled rats (P < 0. 01). Thus PTHrP expression changes in response to lung injury due to 85% oxygen and may regulate cell proliferation.  相似文献   

19.
There is a significant unmet need for treatments of patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). The primary mechanism that leads to resolution of alveolar and pulmonary edema is active vectorial Na(+) and Cl(-) transport across the alveolar epithelium. Several studies have suggested a role for adenosine receptors in regulating this fluid transport in the lung. Furthermore, these studies point to the A(2A) subtype of adenosine receptor (A(2A)R) as playing a role to enhance fluid transport, suggesting that activation of the A(2A)R may enhance alveolar fluid clearance (AFC). The current studies test the potential therapeutic value of the A(2A)R agonist GW328267C to accelerate resolution of alveolar edema and ALI/ARDS in rats. GW328267C, at concentrations of 10(-5) M to 10(-3) M, instilled into the airspaces, increased AFC in control animals. GW328267C did not increase AFC beyond that produced by maximal β-adrenergic stimulation. The effect of GW328267C was inhibited by amiloride but was not affected by cystic fibrosis transmembrane conductance regulator inhibition. The drug was tested in three models of ALI, HCl instillation 1 h, LPS instillation 16 h, and live Escherichia coli instillation 2 h before GW328267C instillation. After either type of injury, GW328267C (10(-4) M) decreased pulmonary edema formation and restored AFC, measured 1 h after GW328267C instillation. These findings show that GW328267C has beneficial effects in experimental models of ALI and may be a useful agent for treating patients with ALI or prophylactically to prevent ALI.  相似文献   

20.
目的:建立内毒素诱导大鼠急性肺损伤的模型并筛选出敏感检测指标。方法:90只wistar大鼠随机分为10组,其中9组以气管内滴注内毒素(Lipopolysaccharide,LPS)建立大鼠急性肺损伤(Acute lung injury,ALI)模型,另一组作为空白对照组。观察造模8、12、24、36、48、72、96、120 h后的肺泡灌洗液(BALF)中肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)水平、肺组织的病理形态学变化、12h造模组与空白组的BALF中的多形核白细胞(PMN)百分比和蛋白浓度。结果:造模后BALF中的TNF-α、IL-6的浓度随时间延长显著升高且均在24 h达到峰值(P0.01);肺组织病理损伤也逐渐加重,12 h已出现明显的肺泡损伤、肺水肿、炎性细胞浸润等病变;12 h模型组BALF中PMN百分比和蛋白浓度较空白对照组显著增加(P0.01)。结论:在该实验条件下,气管内滴注LPS 8 mg/kg,12 h后即可建立ALI模型,可通过检测BALF中的TNF-α、IL-6浓度及肺组织的病变程度等指标进行模型评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号