首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.  相似文献   

3.
Role of creatine phosphokinase in cellular function and metabolism.   总被引:9,自引:0,他引:9  
This paper summarizes the data concerning the role of the creatine phosphokinase system in muscle cells with main attention to the cardiac muscle. Creatine phosphokinase isoenzymes play a key role in the intracellular energy transport from mitochondria to myofibrils and other sites of energy utilization. Due to the existence of the creatine phosphate pathway for energy transport, intracellular creatine phosphate concentration is apparently an important regulatory factor for muscle contraction which influences the contractile force by determining the rate of regeneration of ATP directly available for myosin ATPase, and at the same time controls the activator calcium entry into the myoplasm across the surface membrane of the cells.  相似文献   

4.
The intracellular control mechanism leading to the well-known linear relationship between energy consumption by the sarcomere and the generated mechanical energy is analyzed here by coupling calcium kinetics with cross-bridge cycling. A key element in the control of the biochemical-to-mechanical energy conversion is the effect of filament sliding velocity on cross-bridge cycling. Our earlier studies have established the existence of a negative mechanical feedback mechanism whereby the rate of cross-bridge turnover from the strong, force-generating conformation to the weak, non-force-generating conformation is a linear function of the filament sliding velocity. This feedback allows the analytic derivation of the experimentally established Hill's equation for the force-velocity relationship. Moreover, it allows us to derive the transient length response to load clamps and the transient force response to sarcomere shortening at constant velocity. The results are in agreement with experimental studies. The mechanical feedback regulates the generated power, maintains the linear relationship between energy liberated by the actomyosin-ATPase and the generated mechanical energy, and determines the efficiency of biochemical-to-mechanical energy conversion. The mechanical feedback defines three elements of the mechanical energy: 1) external work done; 2) pseudopotential energy, required for cross-bridge recruitment; and 3) energy dissipation caused by the viscoelastic property of the cross bridge. The last two elements dissipate as heat.  相似文献   

5.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

6.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

7.
Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank–Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.  相似文献   

8.
Myofibrillar creatine kinase and cardiac contraction   总被引:11,自引:0,他引:11  
This article is a review on the organization and function of myofibrillar creatine kinase in striated muscle. The first part describes myofibrillar creatine kinase as an integral structural part of the complex organization of myofibrils in striated muscle. The second part considers the intrinsic biochemical and mechanical properties of myofibrils and the functional coupling between myofibrillar CK and myosin ATPase. Skinned fiber studies have been developed to evidence this functional coupling and the consequences for cardiac contraction. The data show that creatine kinase in myofibrils is effective enough to sustain normal tension and relaxation, normal Ca sensitivity and kinetic characteristics. Moreover, the results suggest that myofibrillar creatine kinase is essential in maintaining adequate ATP/ADP ratio in the vicinity of myosin ATPase active site to prevent dysfunctioning of this enzyme. Implications for the physiology and physiopathology of cardiac muscle are discussed.  相似文献   

9.
Cyclic interactions between myosin II motor domains and actin filaments that are powered by turnover of ATP underlie muscle contraction and have key roles in motility of nonmuscle cells. The elastic characteristics of actin-myosin cross-bridges are central in the force-generating process, and disturbances in these properties may lead to disease. Although the prevailing paradigm is that the cross-bridge elasticity is linear (Hookean), recent single-molecule studies suggest otherwise. Despite convincing evidence for substantial nonlinearity of the cross-bridge elasticity in the single-molecule work, this finding has had limited influence on muscle physiology and physiology of other ordered cellular actin-myosin ensembles. Here, we use a biophysical modeling approach to close the gap between single molecules and physiology. The model is used for analysis of available experimental results in the light of possible nonlinearity of the cross-bridge elasticity. We consider results obtained both under rigor conditions (in the absence of ATP) and during active muscle contraction. Our results suggest that a wide range of experimental findings from mechanical experiments on muscle cells are consistent with nonlinear actin-myosin elasticity similar to that previously found in single molecules. Indeed, the introduction of nonlinear cross-bridge elasticity into the model improves the reproduction of key experimental results and eliminates the need for force dependence of the ATP-induced detachment rate, consistent with observations in other single-molecule studies. The findings have significant implications for the understanding of key features of actin-myosin-based production of force and motion in living cells, particularly in muscle, and for the interpretation of experimental results that rely on stiffness measurements on cells or myofibrils.  相似文献   

10.
The NMR technique of magnetization transfer can be used to define intracellular reaction kinetics. In order to determine the relationship between ATP synthesis and flux through the creatine kinase reaction in the intact heart, we used this technique to measure flux through the creatine kinase reaction in the isolated, isovolumic rat heart at five levels of cardiac performance and oxygen consumption. The unidirectional reaction rate constants (s-1) calculated from a two-site exchange model for both the forward and reverse creatine kinase reactions increased with cardiac performance and oxygen consumption. As the rate-pressure product varied from 0 to 44.7 X 10(3) mm Hg/min and oxygen consumption rose from 5.9 to 45.8 mumol of O2/g dry weight/min, kforward increased from 0.27 to 1.30 and kreverse increased from 0.31 to 1.14. The relationship between creatine kinase flux and oxygen consumption, and thus ATP synthesis, took the form of the Michaelis-Menten equation. Rates of ATP synthesis estimated from magnetization transfer were similar to values calculated from oxygen consumption. The longitudinal relaxation time of creatine phosphate (2.06 s), the gamma-phosphorus atom of ATP (0.75 s), and inorganic phosphate (0.81 s) did not change with cardiac performance. These results show that myocardial energy transfer via the creatine kinase reaction is closely coupled to energy production.  相似文献   

11.
Recent studies have revealed the structural and functional interactions between mitochondria, myofibrils and sarcoplasmic reticulum in cardiac cells. Direct channeling of adenosine phosphates between organelles identified in the experiments indicates that diffusion of adenosine phosphates is limited in cardiac cells due to very specific intracellular structural organization. However, the mode of diffusion restrictions and nature of the intracellular structures in creating the diffusion barriers is still unclear, and, therefore, a subject of active research. The aim of this work is to analyze the possible role of two principally different modes of restriction distribution for adenosine phosphates (a) the uniform diffusion restriction and (b) the localized diffusion limitation in the vicinity of mitochondria, by fitting the experimental data with the mathematical model. The reaction-diffusion model of compartmentalized energy transfer was used to analyze the data obtained from the experiments with the skinned muscle fibers, which described the following processes: mitochondrial respiration rate dependency on exogenous ADP and ATP concentrations; inhibition of endogenous ADP-stimulated respiration by pyruvate kinase (PK) and phosphoenolpyruvate (PEP) system; kinetics of oxygen consumption stabilization after addition of 2 mM MgATP or MgADP; ATPase activity with inhibited mitochondrial respiration; and buildup of MgADP concentration in the medium after addition of MgATP. The analysis revealed that only the second mechanism considered--localization of diffusion restrictions--is able to account for the experimental data. In the case of uniform diffusion restrictions, the model solution was in agreement only with two measurements: the respiration rate as a function of ADP or ATP concentrations and inhibition of respiration by PK + PEP. It was concluded that intracellular diffusion restrictions for adenosine phosphates are not distributed uniformly, but rather are localized in certain compartments of the cardiac cells.  相似文献   

12.
Treatment of perfused rat hearts with 0.5 mM iodoacetamide (IAAm) for 15 min at different workloads resulting in a nearly complete inhibition of creatine kinase (CK, 99%) was followed by a rapid decline of the phosphocreatine (PCr) level (30%) and a 2-fold increase of the P(i) level which then stabilized. Conversely, the ATP content started to drop monotonously at the beginning of the IAAm washout and reached 30% 90 min after the IAAm removal under medium load. Under low workload the ATP decay occurred at later periods. Neither the ADP-stimulated mitochondrial respiration in skinned fibers, nor the Ca(2+)-stimulated ATPase activity of myofibrils was affected by IAAm treatment. The sensitivity of the resting tension of skinned fibers to Ca2+ tended to a slight increase. The cardiac work index (PRP-pressure-rate product) decreased by 25%, while the end diastolic pressure (EDP) rose by 15 mm Hg when IAAm acted under medium load. In contrast, under low work these parameters were practically stable. The hearts poisoned with IAAm performed a two times lower maximal work and had reduced (by 35%) oxygen consumption rates. The efficiency of energy utilization for mechanical work decreased by 40%. The changes in PRP and EDP correlated with the cytosolic [ATP]/[ADP] ratio in such a way that the decrease in the latter was associated with a decrease in PRP and the elevation of EDP. These data suggest that the creatine kinase system is necessary for the effective translation of a high [ATP]/[ADP] ratio from the intermembrane space of mitochondria to the cytoplasm, myofibrils and ionic pumps. This provides a high level of mechanical work and good relaxation of the left ventricle and protects cytosolic adenine nucleotides from the breakdown.  相似文献   

13.
Cardiac myofilaments: mechanics and regulation   总被引:7,自引:0,他引:7  
The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.  相似文献   

14.
This study utilized N-benzyl-p-toluene sulfonamide (BTS), a potent inhibitor of cross-bridge cycling, to measure 1) the relative metabolic costs of cross-bridge cycling and activation energy during contraction, and 2) oxygen uptake kinetics in the presence and absence of myosin ATPase activity, in isolated Xenopus laevis muscle fibers. Isometric tension development and either cytosolic Ca2+ concentration ([Ca2+]c) or intracellular Po2 (PiO2) were measured during contractions at 20 degrees C in control conditions (Con) and after exposure to 12.5 microM BTS. BTS attenuated tension development to 5+/-0.4% of Con but did not affect either resting or peak [Ca2+]c during repeated isometric contractions. To determine the relative metabolic cost of cross-bridge cycling, we measured the fall in PiO2) (DeltaPiO2; a proxy for Vo2) during contractions in Con and BTS groups. BTS attenuated DeltaP(iO2) by 55+/-6%, reflecting the relative ATP cost of cross-bridge cycling. Thus, extrapolating DeltaPiO2 to a value that would occur at 0% tension suggests that actomyosin ATP requirement is approximately 58% of overall ATP consumption during isometric contractions in mixed fiber types. BTS also slowed the fall in PiO2) (time to 63% of overall DeltaPiO2) from 75+/-9 s (Con) to 101+/-9 s (BTS) (P<0.05), suggesting an important role of the products of ATP hydrolysis in determining the Vo2 onset kinetics. These results demonstrate in isolated skeletal muscle fibers that 1) activation energy accounts for a substantial proportion (approximately 42%) of total ATP cost during isometric contractions, and 2) despite unchanged [Ca2+]c transients, a reduced rate of ATP consumption results in slower Vo2 onset kinetics.  相似文献   

15.
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ~28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ~0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ~66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.  相似文献   

16.
ATPase and creatine phosphokinase (CPK) activities of isolated cardiac myofibrils were determined with 32P γ-labeled ATP alone and with the addition of phosphorylcreatine (PC). With ATP and PC as substrates the label in the inorganic phosphate formed is greatly diluted indicating that the ATP formed by PC through CPK can reach the ATPase active site more readily than labeled ATP from the medium. The tight coupling of the ATPase and CPK activities further strengthens our view that PC serves an important role as high energy carrier between the energy producing sites (mitochondria) and the energy utilizing sites (myofibrils).  相似文献   

17.
Previous studies on the energy metabolism of rat myocardial cells in culture supported the hypothesis that the creatine-phosphocreatine–creatine kinase system plays an important role in the intracellular transport of energy from the mitochondria to the myofibrils and in the regulation of energy production coupled to energy utilization in this model system. Effective functional compartmentation of ATP could result from the binding of creatine kinase to cellular organelles (e.g., myofibrils and mitochondria) such that high energy charge at the myofibrils is maintained by the reverse creatine kinase reaction, while phosphocreatine is synthesized mainly at the mitochondria in the forward creatine kinase reaction. It was, therefore, essential to demonstrate the presence of mitochondrial creatine kinase in the cultured myocardial cells to support this hypothesis, particularly since the mitochondrial creatine kinase was reportedly absent in fetal hearts. Using electrophoresis on cellulose acetate strips, the mitochondrial creatine kinase isozyme, as well as MM, MB, and BB isozymes, have now been demonstrated in myocardial cultures derived from neonatal rats. The mitochondrial creatine kinase increased with age in culture and with age of animal from which the culture is derived. Furthermore, the addition of creatine to culture media stimulates its synthesis. The mitochondrial creatine kinase isozyme was not detected in nonmuscle cells in culture derived from the neonatal rat hearts, nor in L6 muscle cell line. Phosphocreatine was present in all cells, but the regulation of energy metabolism and energy shuttle by creatine-phosphocreatine–creatine kinase could be operative only in the cells where the mitochondrial creatine kinase is present. This regulatory mechanism provides for an efficient system concomitant with the continuous energy demand of the myocardium; it is not ubiquitous and its development in myocardial cells seems to be triggered postnatally.  相似文献   

18.
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria.  相似文献   

19.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

20.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号