首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.  相似文献   

2.
The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L?1 of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work.  相似文献   

3.
Bacterial strain 5bvl1, isolated from a chromium-contaminated wastewater treatment plant and identified as Ochrobactrum tritici, was resistant to a broad range of antibiotics, to Cr(VI), Ni(II), Co(II), Cd(II), and Zn(II), and was able to grow in the presence of 5% NaCl and within the pH range 4-10. Characterization showed that strain 5bvl1 could be considered a halotolerant and alkalitolerant microorganism resistant to high concentrations of Cr(VI). This strain was able to grow aerobically in up to 10 mmolxL(-1) Cr(VI). Cr(VI) resistance was independent of sulphate concentration. Under aerobic conditions strain 5bvl1 was also able to reduce high Cr(VI) concentrations (up to 1.7 mmolxL(-1)). Increasing concentrations of Cr(VI) in the medium lowered the growth rate of strain 5bv11 but the reduction in growth rate could not be directly correlated with the amount of Cr(VI) reduced. Unlike the type strain, which was only able to reduce Cr(VI), strain 5bvl1 was resistant to Cr(VI) and able to reduce it. Moreover, in strain 5bvl1, the rate and extent of Cr(VI)-reduction were higher than in the other strains of the genus Ochrobactrum. Ochrobactrum strain 5bvl1 resists high Cr(VI) concentrations and has a high Cr(VI)-reducing ability, making it a valuable tool in bioremediation.  相似文献   

4.
A Bacillus sp. RE was resistant to chromium and reduced Cr(VI) without accumulating chromium inside the cell. When Cr(VI) was 10 and 40 μg ml−1, >95% of the total Cr(VI) was reduced in 24 and 72 h of growth, respectively, whereas at 80 μg Cr(VI) ml−1 only 50% of Cr(VI) was reduced. However growth was not affected; the cell mass was 0.7–0.8 mg ml−1 in all cases. The cell-free extract showed Cr(VI) reducing enzyme activity which was enhanced (>5 fold) by NADH and NADPH. Like whole cells the enzyme also reduced Cr(VI) with decreasing efficiency on increasing Cr(VI) concentration. The enzyme activity was optimal at pH 6.0 and 30 °C. The enzyme was stable up to 30 °C and from pH 5.5 to 8, but from pH 4 to 5 the enzyme was severely destabilized. Its Km and Vmax were 14 μm and 3.8 nmol min−1 mg−1 respectively. The enzyme activity was enhanced by Cu2+ and Ni2+ and inhibited by Hg2+. Received 21 September 2005; Revisions requested 5 October 2005; Revisions received 16 November 2005; Accepted 16 November 2005  相似文献   

5.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

6.
Removal of Cr(VI) from ground water by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Chromium can be removed from ground water by the unicellular yeast, Saccharomyces cerevisiae. Local ground water maintains chromium as CrO4 2- because of bicarbonate buffering and pH and E h conditions (8.2 and +343 mV, respectively). In laboratory studies, we used commercially available, nonpathogenic S. cerevisiae to remove hexavalent chromium [Cr(VI)] from ground water. The influence of parameters such as temperature, pH, and glucose concentration on Cr(VI) removal by yeast were also examined. S. cerevisiae removed Cr(VI) under aerobic and anaerobic conditions, with a slightly greater rate occurring under anaerobic conditions. Our kinetic studies reveal a reaction rate (Vmax) of 0.227 mg h-1 (g dry wt biomass)-1 and a Michaelis constant (Km) of 145 mg/l in natural ground water using mature S. cerevisiae cultures. We found a rapid (within 2 minutes) initial removal of Cr(VI) with freshly hydrated cells [55–67 mg h-1 (g dry wt biomass)-1] followed by a much slower uptake [0.6–1.1 mg h-1 (g dry wt biomass)-1] that diminished with time. A materials-balance for a batch reactor over 24 hours resulted in an overall shift in redox potential from +321 to +90 mV, an increase in the bicarbonate concentration (150–3400 mg/l) and a decrease in the Cr(VI) concentration in the effluent (1.9-0 mg/l).  相似文献   

7.
An NAD(P)H-dependent Cr(VI) reductase (molecular weight = 65,000) was purified from a Cr(VI)-resistant bacterium, Pseudomonas ambigua G-1. Stoichiometric analysis of the enzymatic reaction showed that the enzyme catalyzed the reduction of 1 mol of Cr(VI) to Cr(III) while consuming 3 mol of NADH as an electron donor. Chromium(VI) was reduced to Cr(V) by one equivalent NADH molecule in the absence of the enzyme. Electron spin resonance analysis showed that Cr(V) species (g = 1.979) was formed during the enzymatic reduction. The amount of Cr(V) species formed was about 10 times larger than that of the nonezymatic reduction. These findings show that the Cr(VI) reductase reduced Cr(VI) to Cr(III) with at least two reaction steps via Cr(V) as an intermediate.  相似文献   

8.
The bacterial community structure of a chromium water bath, a chromium drainage waste system, a chromium pretreatment tank, and a trivalent chromium precipitation tank from the Hellenic Aerospace Industry S.A. was assessed using 16S rRNA libraries and a high-density DNA microarray (PhyloChip). 16S rRNA libraries revealed a bacterial diversity consisting of 14 distinct operational taxonomic units belonging to five bacterial phyla: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Bacteroidetes. However, employing a novel microarray-based approach (PhyloChip), a high bacterial diversity consisting of 30 different phyla was revealed, with representatives of 181 different families. This made it possible to identify a core set of genera present in all wastewater treatment stages examined, consisting of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and Bacteroidetes. In the chromium pretreatment tank, where the concentration of Cr(VI) is high (2.3 mg/l), we identified the presence of Pseudomonadales, Actinomycetales, and Enterobacteriales in abundance. In the chromium precipitation tank, where the concentration of Cr(III) is high, the dominant bacteria consortia were replaced by members of Rhodocyclales and Chloroflexi. The bacterial community structure changed significantly with changes in the chromium concentration. This in-depth analysis should prove useful for the design and development of improved bioremediation strategies.  相似文献   

9.
10.
11.
微生物还原Cr(VI)的研究进展   总被引:1,自引:0,他引:1  
随着现代工业的发展,水环境中的重金属对人类健康和环境带来严重的危害,其中的Cr(VI)具有强烈的毒性.微生物在代谢过程中可以将Cr(VI)还原为Cr(Ⅲ),有效降低Cr(VI)的毒性.本文从可还原Cr(VI)的微生物、微生物还原Cr(VI)的机理、还原过程中存在的问题及发展方向等方面进行了综述.  相似文献   

12.
微生物还原Cr(VI)的研究进展   总被引:2,自引:0,他引:2  
随着现代工业的发展, 水环境中的重金属对人类健康和环境带来严重的危害, 其中的Cr(VI)具有强烈的毒性。微生物在代谢过程中可以将Cr(VI)还原为Cr(III), 有效降低Cr(VI)的毒性。本文从可还原Cr(VI)的微生物、微生物还原Cr(VI)的机理、还原过程中存在的问题及发展方向等方面进行了综述。  相似文献   

13.
Three efficient Cr(VI) reducing bacterial strains were isolated from Cr(VI) polluted landfill and characterized for in vitro Cr(VI) reduction. Phylogenetic analysis using 16S rRNA gene sequencing revealed that the newly isolated strains G1DM20, G1DM22 and G1DM64 were closely related to Bacillus cereus, Bacillus fusiformis and Bacillus sphaericus, respectively. The suspended cultures of all Bacillus sp. exhibited more than 85% reduction of 1000 microM Cr(VI) within 30 h. The suspended culture of Bacillus sp. G1DM22 exhibited an ability for continuous reduction of 100 microM Cr(VI) up to seven consecutive inputs. Assays with the permeabilized cells and cell-free extracts from each of Bacillus sp. demonstrated that the hexavalent chromate reductase activity was mainly associated with the soluble fraction of cells and expressed constitutively. The Cr(VI) reduction by the cell-free extracts of Bacillus sp. G1DM20 and G1DM22 was maximum at 30 degrees C and pH 7 whereas, Bacillus sp. G1DM64 exhibited maximum Cr(VI) reduction at pH 6. Addition of 1mM NADH enhanced the Cr(VI) reductase activity in the cell-free extracts of all three isolates. Amongst all three isolates tested, crude cell-free extracts of Bacillus sp. G1DM22 exhibited the fastest Cr(VI) reduction rate with complete reduction of 100 microM Cr(VI) within 100 min. The apparent K(m) and V(max) of the chromate reductase activity in Bacillus sp. G1DM22 were determined to be 200 microM Cr(VI) and 5.5 micromol/min/mg protein, respectively. The Cr(VI) reductase activity in cell-free extracts of all the isolates was stable in presence of different metal ions tested except Hg(2+) and Ag(+).  相似文献   

14.
A consortium of bacteria with tolerance to high concentrations of Cr(VI) (up to 2,500 ppm) and other toxic heavy metals has been obtained from metal-refinishing wastewaters in Chengdu, People's Republic of China. This consortium consists of a range of gram-positive and gram-negative rods and has the capacity to reduce Cr(VI) to Cr(III) as amorphous precipitates which are associated with the bacterial surfaces. An endospore-producing, gram-positive rod and a gram-negative rod accumulate the most metallic precipitates, and, over time, 80 to 95% of Cr can be removed from concentrations ranging from 50 to 2,000 ppm (0.96 to 38.45 mM). Kinetic studies revealed a first-order constant for Cr removal of 0.1518 h-1 for an initial concentration of 1,000 ppm (19.3 mM), and the sorption isothermal data could be interpreted by the Freundlich relationship. The sorption was not entirely due to a passive interaction with reactive sites on the bacterial surfaces since gamma-irradiated, killed cells could not immobilize as much metal. When U or Zn was added with the Cr, it was also removed and could even increase the total amount of Cr immobilized. The consortium was tolerant to small amounts of oxygen in the headspace of tubes, but active growth of the bacteria was a requirement for Cr immobilization through Cr(VI) reduction, resulting in the lowering of Eh. Our data suggest that the reduction was via H2S. This consortium has been named SRB III, and it may be useful for the bioremediation of fluid metal-refining wastes.  相似文献   

15.
A Cr(VI)-resistant yeast was isolated from tanning liquors from a leather factory in Leon, Guanajuato, Mexico. Based on morphological and physiological analyses and the D1/D2 domain sequence of the 26S rDNA, the yeast was identified as Candida maltosa. Resistance of the strain to high Cr(VI) concentrations and its ability to chemically reduce chromium was studied. When compared to the three laboratory yeasts Candida albicans, Saccharomyces cerevisiae and Yarrowia lipolytica, the C. maltosa strain was found to tolerate chromate concentrations as high as 100 micro g/ml. In addition to this phenotypic trait, the C. maltosa strain showed ability to reduce Cr(VI). Chromate reduction occurred both in intact cells (grown in culture medium or in soil containing chromate) as well as in cell-free extracts. NADH-dependent chromate reductase activity was found associated with soluble protein and, to a lesser extent, with the membrane fraction.  相似文献   

16.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

17.
Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon   总被引:3,自引:0,他引:3  
Laboratory scale experiments were carried out to produce and characterise biofuel from tigernut (Cyperus esculentus) oil. Transesterification of tigernut oil afforded methyl and ethyl esters, which had fuel properties similar to common biofuels, hence tigernut could be utilised as an alternative renewable energy resource.  相似文献   

18.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI) 还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S. pombe的Cr(VI) 去除速率基本同步,远优于无絮凝性状的亲本S. cerevisiae;达到吸附平衡时,S. pombe、SPSC01和S. cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI) 的还原、吸附,絮凝蛋白在Cr(VI) 的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱 (FTIR) 分析,对SPSC01菌体表面吸附Cr(VI) 的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI) 起主要作用的基团是氨基、羧基和酰胺基。  相似文献   

19.
Cr(VI)还原菌的筛选、鉴定及其还原物质分析   总被引:1,自引:1,他引:0  
【背景】铬污染土壤是我国土壤污染修复的重点治理对象,在众多修复技术中,微生物法因具有简单、经济、无二次污染等特性已成为研究热点,而微生物法中筛选出既能适应污染场地环境又能高效还原Cr(VI)的菌株尤为重要。【目的】筛选适应西北寒旱区高效还原Cr(VI)的菌株,丰富铬还原菌资源库,为铬污染土壤修复奠定基础。【方法】采用富集驯化、分离纯化法进行筛菌;通过形态学和分子生物学相结合的方法对目的菌株进行鉴定;采用傅里叶变换红外光谱法对还原机理进行研究。【结果】菌株G-13有较强的Cr(VI)还原能力,pH 9.0、温度为30°C条件下,60 h对Cr(VI)(100 mg/L)的还原率达到82.8%。经形态学和分子生物学鉴定,菌株G-13为Micrococcus luteus。反应中Cr(VI)的降低伴随着Cr(III)的增加,说明以还原反应为主,并且还原能力与细菌生长呈依赖型关系。对细胞各组分及变性研究表明,胞外酶在还原反应中占主要作用。除Pd~(2+)、Cd~(2+)外,其余金属离子对酶活性无明显抑制作用。通过傅里叶变换红外光谱分析,发现G-13与Cr(VI)结合位点主要为羟基、羰基、羧基、–CH、酰胺基等。【结论】菌株G-13有较强的Cr(VI)还原能力,能为西北寒旱区铬污染土壤修复丰富菌种资源。  相似文献   

20.
Reductive adsorption of Cr(VI) on coir pith (hereafter CP) was examined as a function of pH, ionic strength, and temperature. The CP contains 1.33 meq g? 1 phenolic, 0.43 meq g? 1 of lactonic, and 0.35 meq g? 1 carboxylic sites. Thus the CP surface is enriched with electron-donating oxygen functionalities. As evidenced by infrared (IR) spectroscopy, the Cr(VI) → Cr(III) conversion is facilitated by CP sites that are enriched with O─ O functional groups. The adsorption of reduced Cr(VI) was found to occur via C─ O─ functional groups first forming innersphere complexes with the CP surface, yielding keto (> C═ O) groups on the CP surface. The reductive adsorption of Cr(VI) was almost completed within 3 to 4 h, and it was dependent on pH and background ionic strength, yielding the highest monolayer coverage (9.56E-7 mol m? 2) at pH 3.7 in 0.1 M NaNO3. The ΓCr(III) followed the order with respect to the ionic strength: Γ0.1 M > Γ0.01 M > Γ0.001 M. The initial rate constant, k i , increased with temperature as k i 313 K > k i 303 K > k i 293 K > k i 283 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号