首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ornithine decarboxylase and arginine decarboxylase activities were measured in roots and buds of tomato (Lycopersicon esculentum Mill. cv. Pearson ms-35) and potato (Solanum tuberosum cv. Desire) plants. In both tomato and potato, the activity of ornithine decarboxylase was the highest at the root tip, decreasing proximally. The same was true for potato buds. In vegetative buds of tomato, the highest activity was found in the youngest leaves. The older the leaf, the lower was orithine decarboxylase activity. Arginine decarboxylase, on the other hand, did not display a similar gradient. These findings are in accordance with the suggestion that in tomato and potato elevated ornithine decarboxylase activity is associated with intense mitotic activity.  相似文献   

2.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

3.
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

4.
In vitro formation of roots is obtained directly, without intermediate growth of callus, from foliar explants of a tobacco (Nicotiana tabacum) plant cultured on Murashige and Skoog medium containing IAA. Auxin-induced root formation was accompanied by significant changes in hydroxycinnamoylputrescine levels. Increasing levels were found in leaf explants during the first 14 days in culture; this was followed by a sharp decline after 20 days. Early changes in putrescine conjugates were detected in leaf explants before the visible appearance of roots. An early and transitory accumulation of hydroxycinnamoylputrescines was observed in the roots. Free polyamines (putrescine, spermidine, and spermine) in leaf explants and roots were always at a low level and only small changes in their concentrations were observed, α-dl-difluoromethylarginine and α-dl-difluoromethylornithine, specific, irreversible inhibitors of arginine decarboxylase and ornithine decarboxylase, respectively, inhibited putrescine accumulation and root initiation and reduced the fresh and dry weights of leaf explants. These effects were reversed by free putrescine or hydroxycinnamoylputrescines. The results reported here suggest that hydroxycinnamoylputrescines are associated with root formation. The relationship among free polyamines, hydroxycinnamoylputrescines, cell division, and root formation is discussed.  相似文献   

5.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

6.
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.  相似文献   

7.
John Z. Kiss  Fred D. Sack 《Planta》1989,178(1):123-130
The activity of arginine decarboxylase (EC 4.1.1.19) in cultured roots of Hyoscyamus albus L., which produce considerable amounts of tropane alkaloids, was twice that of ornithine decarboxylase (EC 4.1.1.17), both activities being highest during active root growth, whereas arginase (EC 3.5.3.1) activity was negligible. Actively growing roots had putrescine conjugates as their major polyamines, and spermidine was the most abundant free polyamine. Putrescine N-methyltransferase (PMT; EC 2.1.1.53) activity was high, the peak occurring on the sixth day of culture when root growth became slower. Thereafter, the free N-methylputrescine content of the roots increased and was followed by an increase in alkaloid content (mostly hyoscyamine). The amounts of arginine and, especially, of ornithine were low. No N-methylornithine was detected. The PMT activity was present only in root, shoot and cell-suspension cultures of plants that synthesized tropane alkaloids or nicotine; no enzyme activities that methylate ornithine at the -amino group or that decarboxylate -N-methylornithine were detected in any of the cultures tested. Our data indicate that tropane alkaloids in H. albus roots are synthesized by way of the symmetrical putrescine, i.e. a pathway different from that proposed by E. Leete (1962, J. Am. Chem. Soc. 84, 55) according to which these alkaloids are synthesized by way of asymmetrical -N-methylornithine.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - PCA perchloric acid - PMT putrescine N-methyltransferase  相似文献   

8.
The activity of L-arginine decarboxylase (EC 4.1.1.19) and L-ornithine decarboxylase (EC 4.1.1.17), polyamine content, and incorporation of arginine and ornithine into polyamines, were determined in mung bean [Vigna radiata (L.) Wilczek] plants subjected to salt (hypertonic) stress (NaCl at 0.51–2.27 MPa). Changes in enzyme activity in response to hypotonic stress were determined as well in several halophytes [Pulicaria undulata (L.), Kostei, Salsola rosmarinus (Ehr.) Solms-Laub, Mesembryanthemum forskahlei Hochst, and Atriplex halimus L.]. NaCl stress, possibly combined with other types of stress that accompanied the experimental conditions, resulted in organ-specific changes in polyamine biosynthesis and content in mung bean plants. The activity of both enzymes was inhibited in salt-stressed leaves. In roots, however, NaCl induced a 2 to 8-fold increase in ornithine decarboxylase activity. Promotion of ornithine decarboxylase in roots could be detected already 2 h after exposure of excised roots to NaCl, and iso-osmotic concentrations of NaCl and KCl resulted in similar changes in the activity of both enzymes. Putrescine level in shoots of salt-stressed mung bean plants increased considerably, but its level in roots decreased. The effect of NaCl stress on spermidine content was similar, but generally more moderate, resulting in an increased putrescine/spermidine ratio in salt-stressed plants. Exposure of plants to NaCl resulted also in organ-specific changes in the incorporation of both arginine and ornithine into putrescine: incorporation was inhibited in leaf discs but promoted in excised roots of salt-stressed mung bean plants. In contrast to mung bean (and several other glycophytes), ornithine and arginine decarboxylase activity in roots of halophytes increased when plants were exposed to tap water or grown in a pre-washed soil—i.e. a hypotonic stress with respect to their natural habitat. NaCl, when present in the enzymatic assay mixture, inhibited arginine and ornithine decarboxylase in curde extracts of mung bean roots, but did not affect the activity of enzymes extracted from roots of the halophyte Pulicaria. Although no distinct separation between NaCl stress and osmotic stress could be made in the present study, the data suggest that changes in polyamines in response to NaCl stress in mung bean plants are coordinated at the organ level: activation of biosynthetic enzymes concomitant with increased putrescine biosynthesis from its precursors in the root system, and accumulation of putrescine in leaves of salt-stressed plants. In addition, hypertonic stress applied to glycophytes and hypotonic stress applied to halophytes both resulted in an increase in the activity of polyamine biosynthetic enzymes in roots.  相似文献   

9.
10.
During the life cycle of Chlorella vulgaris Beijerinck var vulgaris fa. vulgaris growing synchronously, the specific activity of ornithine decarboxylase peaked at the 2nd hour of the cycle, whereas that of arginine decarboxylase changed only slightly, increasing towards the end of the cycle. The endogenous level of putrescine and spermidine on a per cell basis increased gradually up to the 8th hour of the cycle, and declined thereafter. Thus, the peak of ornithine decarboxylase activity and the polyamine increase preceded both DNA replication (which took place between the 6th and 8th hours of the cycle) and autospore release (which started at the 8th hour). A 2-fold increase in the light intensity caused doubling of the DNA content, resulting in doubling of the number of autospores per mother cell. It also brought about a 2-fold increase in the specific activity of ornithine decarboxylase and polyamine content, the peaks being at the same hour of the cycle under high and low light intensities. The increase in cell number and polyamine content in a Chlorella culture grown under high light intensity was inhibited by α-difluoromethyl ornithine, a specific inhibitor of ornithine decarboxylase, this inhibition being partially reversed by putrescine.

It is suggested that in C. vulgaris the sequence of events which relates polyamine biosynthesis to cell division is as follows: increased ornithine decarboxylase activity, accumulation of polyamines, DNA replication, and autospore release.

  相似文献   

11.
嫁接对铜胁迫下黄瓜幼苗根系多胺代谢的影响   总被引:4,自引:0,他引:4  
采用营养液栽培法,研究了嫁接(以黑籽南瓜为砧木)对铜胁迫下黄瓜幼苗根系活力及多胺代谢的影响.结果表明:铜胁迫下黄瓜幼苗根系活力下降,电解质渗漏率升高,而嫁接苗的变化幅度显著小于黄瓜自根苗;铜胁迫下黄瓜嫁接植株根系中除游离态腐胺(Put)含量显著低于自根苗外,结合态和束缚态Put、3种形态亚精胺(Spd)和精胺(Spm)含量均显著高于自根苗,嫁接苗根系中游离态Put含量及腐胺/多胺(Put/PAs)显著低于自根苗;铜胁迫下,嫁接苗根系精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(ODC)和S-腺苷蛋氨酸脱羧酶(SAMDC)活性高于自根苗,而二胺氧化酶(DAO)和多胺氧化酶(PAO)活性显著低于自根苗.表明嫁接黄瓜幼苗根系PAs的合成增加,降解减少,使PAs含量维持在较高水平,从而提高了黄瓜幼苗抗铜胁迫能力.  相似文献   

12.
The effects of the inhibitors of polyamine biosynthesis, canavanineand -methyl ornithine on growth, the activities of argininedecarboxylase (EC 4.1.1.19 [EC] ) and ornithine decarboxylase (EC4.1.1.17 [EC] ) and on polyamine content were examined in two differentgrowth regions of Phaseolus vulgaris L. cv. Taylor's Horticulturalroots. Separately, in the same manner, in the same bean rootsystem exogenous putrescine effect and the interaction of canavaninewith putrescine were determined. The arginine and ornithine decarboxylase activities found inroot apex were high where cell division activity was highest.Polyamine (putrescine and spermine) content did not correlatewith these activities, but polyamine level was high in the rootbase where cell elongation is the main process. The arginineanalogue, canavanine, inhibited arginine decayboxylase activityand polymine liters. Putrescine partially reversed the canavanineinhibition of root growth as well as arginine decarboxylaseactivity and polyamine content. Similarly -methyl ornithineslightly inhibited the root length and ornithine decarboxylaseactivity in the root apex. Besides, exogenous putrescine didnot effect significantly the endogenous polyamine titers. Theseresults reinforce the growing connection between polyaminesand the rates of cell devision in the roots of bean plants.Separately, arginine decarboxylase is the main enzyme in thebean roots. (Received November 10, 1986; Accepted March 3, 1987)  相似文献   

13.
 Jasmonic acid (JA) and its methyl ester (MeJA) at concentrations ranging from 0.001 to 10 μM provoked large increases in methylputrescine levels in normal and hairy roots of Hyoscyamus muticus L.; generally, levels of free putrescine and perchloric acid-soluble conjugated putrescine, spermidine and spermine also increased dramatically. More 14C-putrescine was formed when hairy roots were incubated with labelled ornithine than with arginine; conjugated 14C-putrescine was also rapidly formed. In accord with these results, ornithine decarboxylase (EC 4.1.1.17) activity was higher than that of arginine decarboxylase (EC 4.1.1.19), and MeJA enhanced these activities about two- and fourfold, respectively. Although treatment of root cultures with jasmonates enhanced precursor (putrescine, methylputrescine) levels and accumulation of secondary metabolites such as acid-soluble conjugated di-/polyamines, it provoked only modest increases in tropane alkaloid tissue levels. Received: 24 March 1999 / Revision received: 5 October 1999 / Accepted: 26 October 1999  相似文献   

14.
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997  相似文献   

15.
Level of free polyamines, their key metabolic enzymes, and other features related to ageing were examined during stipule and pod wall development in pea (Pisum sativum). Free polyamine titre (per unit fresh mass) in both the organs, the specific activities of arginine decarboxylase and ornithine decarboxylase in the pod wall, gradually decreased with maturation. In stipule, these enzymes attained peak activity at 15 days after pod emergence and declined thereafter. Ornithine decarboxylase activity was greater in pod wall than in stipule; while, arginine decarboxylase activity was higher in stipule. Activity of degradative enzyme diamine oxidase increased with the onset of senescence in both the organs. Chlorophyll and electrical conductance had a inverse relationship throughout the experimental period, whereas, the chlorophyll content was directly related with polyamine levels in both stipule and pod wall during aging. On the other hand, protein and RNA contents were positively correlated with free polyamines throughout the test period in stipule, but in the pod wall this was true only for the later stages of development.  相似文献   

16.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

17.
In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.

No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.

In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  相似文献   

18.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

19.
Arg catabolism to cytoplasmic urea and glutamate is initiated by two mitochondrial enzymes, arginase and ornithine aminotransferase. Mutation of either enzyme leads to Arg sensitivity, and at least in the former, an arginine-induced seedling morphology similar to exogenous auxin treatment. We reported that single mutants lacking either of two arginase isozymes exhibited more NO accumulation and efflux, and increased responses to auxin (measured by DR5 reporter expression and auxin-induced lateral roots). We discuss evidence for stimulation of NO by arginine, either directly, or via polyamines derived from arginine. We favor the “direct” route because mitochondria are sites of NO ‘hot spots,’ and the location of arginine-degrading enzymes and the NO-associated protein1. The polyamine “branch” invokes more than one cell compartment, at least two intermediates (polyamines and H2O2) between Arg and NO, and is not consistent with enhanced lateral root formation in arginine decarboxylase mutants. Genetic tools are at our disposal to test the two possible routes of arginine-derived NO.Key words: nitric oxide, arginine, arginase, root development, polyamines, auxins  相似文献   

20.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号