首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deletion of the cytochrome c2 gene in the purple bacterium Rhodobacter sphaeroides renders it incapable of phototrophic growth (strain cycA65). However, suppressor mutants which restore the ability to grow phototrophically are obtained at relatively high frequency (1-10 in 10(7)). We examined two such suppressors (strains cycA65R5 and cycA65R7) and found the expected complement of electron transfer proteins minus cytochrome c2: SHP, c', c551.5, and c554. Instead of cytochrome c2 which elutes from DEAE-cellulose between SHP and cytochrome c', at about 50 mM ionic strength in wild-type extracts, we found a new high redox potential cytochrome c in the mutants which elutes with cytochrome c551.5 at about 150 mM ionic strength. The new cytochrome is more acidic than cytochrome c2, but is about the same size or slightly smaller (13,500 Da). The redox potential of the new cytochrome from strain cycA65R7 (294 mV) is about 70 mV lower than that of cytochrome c2. The 280 nm absorbance of the new cytochrome is smaller than that of cytochrome c2, which suggests that there is less tryptophan (the latter has two residues). In vitro kinetics of reduction by lumiflavin and FMN semiquinones show that the reactivity of the new cytochrome is similar to that of cytochrome c2, and that there is a relatively large positive charge (+2.6) at the site of reduction, despite the overall negative charge of the protein. This behavior is characteristic of cytochromes c2 and unlike the majority of bacterial cytochromes examined. Fourteen out of twenty-four of the N-terminal amino acids of the new cytochrome are identical to the sequence of cytochrome c2. The N-termini of the cycA65R5 and cycA65R7 cytochromes were the same. The kinetics and sequence data indicate that the new protein may be a cytochrome c2 isozyme, which is not detectable in wild-type cells under photosynthetic growth conditions. We propose the name iso-2 cytochrome c2 for the new cytochrome produced in the suppressor strains.  相似文献   

2.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1987,26(14):4501-4504
The interaction of the Rhodobacter sphaeroides cytochrome bc1 complex with Rb. sphaeroides cytochrome c2 and horse cytochrome c was studied by using specific lysine modification and ionic strength dependence methods. The rate of the reactions with both cytochrome c and cytochrome c2 decreased rapidly with increasing ionic strength above 0.2 M NaCl. The ionic strength dependence suggested that electrostatic interactions were equally important to the reactions of the two cytochromes, even though they have opposite net charges at pH 7.0. In order to define the interaction domain on horse cytochrome c, the reaction rates of derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This result indicates that lysines surrounding the heme crevice of horse cytochrome c are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. In order to define the reaction domain on cytochrome c2, a fraction consisting of a mixture of singly labeled 4-carboxy-2,6-dinitrophenylcytochrome c2 derivatives modified at lysine-35, -88, -95, -97, and -105 and several unidentified lysines was prepared. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The rate of reaction of this fraction was significantly smaller than that of native cytochrome c2, suggesting that the binding domain on cytochrome c2 is also located at the heme crevice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis.  相似文献   

5.
6.
In Rhodobacter sphaeroides, mutations that suppress the photosynthetic deficiency (spd mutations) of strains lacking cytochrome c2 (cyt c2) cause accumulation of a periplasmic cyt c2 isoform that has been designated isocytochrome c2 (isocyt c2). In this study, a new method for purification of both cyt c2 and isocyt c2 is described that uses periplasmic fluid as a starting material. In addition, antiserum to isocyt c2 has been used to demonstrate that all suppressor mutants contain an isocyt c2 of approximately 15 kDa. Western blot analysis indicates that isocyt c2 was present at lower levels in both wild-type and cyt c2 mutants than in spd-containing mutants. Although isocyt c2 is detectable under all growth conditions in wild-type cells, the highest level of isocyt c2 is present under aerobic conditions. Our results demonstrate that spd mutations increase the steady state level of isocyt c2 under photosynthetic conditions. Although the physiological function of isocyt c2 in wild-type cells is not known, we show that a nitrate-regulated protein in Rhodobacter sphaeroides f. sp. denitrificans also reacts with the isocyt c2 antiserum.  相似文献   

7.
8.
The gene encoding cytochrome c3 (cyc-gene) from Desulfovibrio vulgaris (Hildenborough) was cloned by G. Voordouw and S. Brenner (1986, Eur. J. Biochem. 159, 347-351). The gene was expressed in Escherichia coli but only the apoprotein was observed (W. Pollock, P. Chemerika, M. Forrest, J. Beatty, and G. Voordouw, 1989, J. Gen. Microbiol. 135, 2319-2328). In this study, the cyc-gene was cloned into the broad host range vector pRK404 and then introduced into the purple photosynthetic bacterium Rhodobacter sphaeroides. Cells grown anaerobically produced a significant amount of recombinant cytochrome c3. The purified protein contains four hemes and the N-terminal protein sequence is identical to the published sequence of the native cytochrome c3. Thus, R. sphaeroides was able to produce the mature cytochrome c3 by combining the four steps of protein synthesis, exporting the protein across the membrane, cleaving the signal peptide, and inserting four hemes. It appears that the D. vulgaris promoter is not very efficiently used by R. sphaeroides. However, replacement of the promoter with a R. sphaeroides promoter should result in cytochrome c3 overproduction.  相似文献   

9.
The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.  相似文献   

10.
Rhodobacter sphaeroides mutants lacking cytochrome c2 (cyt c2) have been constructed by site-specific recombination between the wild-type genomic cyt c2 structural gene (cycA) and a suicide plasmid containing a defective cyc operon where deletion of cycA sequences was accompanied by insertion of a KnR gene. Southern blot analysis confirmed that the wild-type cyc operon was exchanged for the inactivated cycA gene, presumably by double-reciprocal recombination. Spectroscopic and immunochemical measurements, together with genetic complementation, established that the inability of these mutants to grow under photosynthetic conditions was due to the lack of cyt c2. The cyt c2 deficient strains reduced photooxidized reaction center complexes approximately 4 orders of magnitude more slowly than the parent strain. The phenotype and characteristics of these mutants were restored when a wild-type cyc operon was introduced on a stable low copy number plasmid. These experiments provide the first genetic evidence for the obligatory role of cyt c2 in wild-type cyclic photosynthetic electron transport in R. sphaeroides. We have also observed that the R. sphaeroides cyt c2 deficient strains spontaneously gave rise to photosynthetically competent pseudorevertants at a frequency which suggests that the cyt c2 independent photosynthetic electron transport which suppresses the phenotype of the cyt c2 deficient strains was the result of a single mutation elsewhere in the genome.  相似文献   

11.
12.
13.
When cells of the denitrifying phototrophic bacterium Rhodobacter sphaeroides forma sp. denitrificans were grown anaerobically under illumination in the presence of nitrate, the content of photosynthetic reaction centers per cellular protein was less than that in cells grown photosynthetically without nitrate under the same light intensity. The contents of cytochromes c1 and c2, which work in both photosynthetic and denitrifying electron transport systems, were almost constant, being independent of the presence of nitrate during growth. Consequently, the ratio of cytochromes c1 and c2 to the reaction center was more than three in the photo-denitrifying cells, whereas it was close to one in the photosynthetic cells under light-limiting conditions. In spite of the excess of cytochromes c1 + c2 over the reaction center in the photo-denitrifying cells, all cytochromes c1 + c2 were oxidized by illumination within hundreds of milliseconds in the presence of antimycin. When glycerol was added to increase the viscosity in the periplasm, biphasic oxidation of cytochromes c1 + c2 was apparent in the photo-denitrifying cells with repetitive flashes. The fast phase oxidation, which took place instantaneously (less than 1 ms) after the first and second flashes, showed a similar pattern to the oxidation in the light-limiting photosynthetic cells. The rate of the slow phase oxidation was sensitive to viscosity and was thought to reflect a diffusion-controlled second-order reaction between cytochrome c2 and the reaction center. The biphasic oxidation of cytochromes c1 + c2 suggests that these cytochromes exist in the photo-denitrifying cells as two different pools in relation to the reaction center.  相似文献   

14.
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150,000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30,000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 +/- 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

15.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

16.
Cytochrome c2 is a periplasmic redox protein involved in both the aerobic and photosynthetic electron transport chains of Rhodobacter sphaeroides. The process of cytochrome c2 maturation has been analyzed in order to understand the protein sequences involved in attachment of the essential heme moiety to the cytochrome c2 polypeptide and localization of the protein to the periplasm. To accomplish this, five different translational fusions which differ only in the cytochrome c2 fusion junction were constructed between cytochrome c2 and the Escherichia coli periplasmic alkaline phosphatase. All five of the fusion proteins are exported to the periplasmic space. The four fusion proteins that contain the NH2-terminal site of covalent heme attachment to cytochrome c2 are substrates for heme binding, suggesting that the COOH-terminal region of the protein is not required for heme attachment. Three of these hybrids possess heme peroxidase activity, which indicates that they are functional as electron carriers. Biological activity is possessed by one hybrid protein constructed five amino acids before the cytochrome c2 COOH terminus, since synthesis of this protein restores photosynthetic growth to a photosynthetically incompetent cytochrome c2-deficient derivative of R. sphaeroides. Biochemical analysis of these hybrids has confirmed CycA polypeptide sequences sufficient for export of the protein (A. R. Varga and S. Kaplan, J. Bacteriol. 171:5830-5839, 1989), and it has allowed us to identify regions of the protein sufficient for covalent heme attachment, heme peroxidase activity, docking to membrane-bound redox partners, or the capability to function as an electron carrier.  相似文献   

17.
In c-type cytochromes, heme is attached to the polypeptide via thioether linkages between vinyl groups on the tetrapyrrole ring and cysteine thiols in a CX(2)CH motif. To study the role of the heme-binding site in c-type cytochrome assembly and function, we generated amino acid changes in this region of Rhodobacter sphaeroides cytochrome c(2) ((15)Cys-Gln-Thr-Cys-His(19)). Amino acid substitutions at Cys(15), Cys(18), or His(19) produced mutant proteins that did not support growth via photosynthesis where this electron carrier is required. Many of these changes appeared to slow signal peptide removal, suggesting that heme attachment is coupled to processing of the c-type cytochrome precursor protein. Inserting an alanine between the cysteine ligands (CycA-Ins17A) did not significantly alter the behavior of this protein in vivo and in vitro, suggesting that the existence of 2 residues between cysteine thiols is not essential for heme attachment to a Class I c-type cytochrome like cytochrome c(2).  相似文献   

18.
Rhodobacter sphaeroides cytochrome c2 (cyt c2) is a member of the heme-containing cytochrome c protein family that is found in the periplasmic space of this gram-negative bacterium. This exported polypeptide is made as a higher-molecular-weight precursor with a typical procaryotic signal peptide. Therefore, cyt c2 maturation is normally expected to involve precursor translocation across the cytoplasmic membrane, cleavage of the signal peptide, and covalent heme attachment. Surprisingly, synthesis as a precursor polypeptide is not a prerequisite for cyt c2 maturation because deleting the entire signal peptide does not prevent export, heme attachment, or function. Although cytochrome levels were reduced about threefold in cells containing this mutant protein, steady-state cyt c2 levels were significantly higher than those of other exported bacterial polypeptides which contain analogous signal peptide deletions. Thus, this mutant protein has the unique ability to be translocated across the cytoplasmic membrane in the absence of a signal peptide. The covalent association of heme with this mutant protein also suggests that the signal peptide is not required for ligand attachment to the polypeptide chain. These results have uncovered some novel aspects of bacterial c-type cytochrome biosynthesis.  相似文献   

19.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1989,28(6):2568-2571
The reaction of Rhodobacter sphaeroides cytochrome c2 with the Rb. sphaeroides cytochrome bc1 complex was studied by using singly labeled cytochrome c2 derivatives. Cytochrome c2 was treated with chlorodinitrobenzoic acid to modify lysine amino groups to negatively charged carboxydinitrophenyllysines and separated into eight different fractions by ion-exchange chromatography on a Whatman SE 53 (sulfoxyethyl)cellulose column. Peptide mapping studies indicated that six of these fractions were modified at single lysine amino groups. Each of the derivatives had the same Vmax value as native cytochrome c2 in the steady-state reaction with the Rb. sphaeroides cytochrome bc1 complex. However, the Km values of the cytochrome c2 derivatives modified at lysines 10, 55, 95, 97, 99, and 106 were found to be larger than that of native cytochrome c2 by factors of 6, 2, 3, 32, 13, and 8, respectively. These results indicate that lysines located in the sequence 97-106 on the left side of the heme crevice have the greatest involvement in binding the cytochrome bc1 complex. The involvement of lysine 97 is especially significant because it is located in an extra loop comprising residues 89-98 that is not present in eukaryotic cytochrome c.  相似文献   

20.
The structural gene coding for cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodobacter (Rhodopseudomonas) sphaeroides has been cloned. Its nucleotide sequence has been determined and the amino acid sequence was deduced therefrom. It consists of 157 amino acids (Mr 17,237) and contains four hydrophobic segments. The first 30 residues in the predicted amino acid sequence are the same as those determined for the NH2-terminal portion of purified cytochrome b-562. The amino acid composition is in accord with that determined for the pure protein. From the hydropathy profile and molar ratio of protoheme to cytochrome b-562, it is suggested that the structural and functional unit of the cytochrome is a two-heme cross-linked homodimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号