首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

2.
O-(5-Acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2- nonulopyranoxylonic acid)-(2----6)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3) -L-serine, a structural unit occurring in various submaxillary mucins, was synthesized for the first time by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2----6)-3,4-di-O-acetyl-2- azido-2-deoxy-D- galactopyranosyl trichloroacetimidate (13) and N-(benzyloxycarbonyl)-L-serine benzyl ester as the key intermediates. The trichloroacetimidate 13 was prepared by starting from two monosaccharide synthons, namely, allyl 2-azido-2-deoxy-beta-D-galactopyranoside and methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta-D- galacto-2-nonulopyranosyl chloride)onate, which were coupled in the presence of silver triflate in tetrahydrofuran to give the desired alpha-(2----6)-linked disaccharide in moderate selectivity.  相似文献   

3.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

4.
The spacer-armed trisaccharide, Neu5Gc-alpha-(2-->3')-lactosamine 3-aminopropyl glycoside, was synthesized by regio- and stereoselective sialylation of the suitably protected triol acceptor, 3-trifluoroacetamidopropyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(6-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside, with the donor methyl [phenyl 5-acetoxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate. The donor was obtained, in turn, from methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate by N-tert-butoxycarbonylation of the acetamido group followed by total N- and O-deacetylation, per-O-acetylation, subsequent Boc group removal, and N-acetoxyacetylation.  相似文献   

5.
Described are total syntheses of O-[sodium (5-acetamido-3,5-dideoxy-D -glycero-alpha-D-galacto-2-nonulopyranosyl)onate]-(2----3)-O -beta-D -galactopyranosyl-(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingen ine,O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl+ ++)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine, O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-beta-D-gal act opyranosyl -(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingenine, and O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta-D-galacto-2-nonulopyranosyl++ +)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D -galacto-2-nonulopyranosyl)onate]-(2----3)-2,3,4,6-tetra-O-a cetyl-D -galactopyrano-syl trichloroacetimidate and O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-2,4,6-tri-O-ace tyl-D-galactopyranosyl trichloroacetimidate as key glycosyl donors, and (2S,3R,4E)-3 -O-benzoyl-2-N-tetracosanoylsphingenine as a key glycosyl acceptor.  相似文献   

6.
Methyl[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosid]onat e was used for the glycosylation of benzyl O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)- and benzyl O-(2,3-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl- 2-O-pivaloyl-beta-D-glucopyranoside to give benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2-- --3)-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(21) and benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2----6) -O-(2,3-di- O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl-2-O-pivaloyl- beta-D-glucopyranoside (18), respectively, accompanied by the beta-linked isomers 22 and 19, respectively. Compounds 18, 21, and 22 were converted into the corresponding glycotriosyl donors which, upon coupling with (2S,3R,4E)-3-O-benzoyl-2-N-tetracosanoylsphingenine, afforded completely protected ganglioside analogs 39, 40, and 41, respectively. Deprotection of 40, 41, and 39 completed the synthesis of the modified ganglioside de-N-acetyl-GM3, a stereoisomer, and a regioisomer. The N-deprotected forms of 40 and 39, on successive treatment with methyl isocyanate and O-deprotection, gave the N-(N-methylcarbamoyl) analogs of GM3 and its regioisomer.  相似文献   

7.
Coupling of the sodium salt of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose, -beta-D-galactopyranose, O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6-tri-O- acetyl- 1-thio-beta-D-glucopyranose, or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto -2- nonulopyranosylonate)-(2----3)-O-(2,3-di-O-acetyl-6-O-bezoyl -beta-D- galactopyranosyl)-(1----4)-3-O-acetyl-2,6-di-O-benzoyl-1-thio-beta-D- glucopyranose, which were prepared from the corresponding 1-S-acetates, 1, 3, 6, and 9, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-tolylsulfonyl)-4-oc tadecene-1,3-diol (12) derived by tosylation of 11, gave the corresponding beta-thioglycosides 13, 17, 21, and 25, respectively in good yield. The beta-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

8.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

9.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

10.
The syntheses of three trisaccharides: alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 4)-beta-D-GlcNAc --> OMe, alpha-Neu5Ac-(2 --> 3)-beta-D-Gal6SO3Na-(1 --> 4)-beta-D-GlcNAc --> OMe, and alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 3)-alpha-D-GalNAc --> OBn were accomplished by using either methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-glycero-D-g alacto-2-nonulopyranoside)onate or methyl (phenyl N-acetyl-5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-gl ycero-D-galacto-2-nonulopyranoside)onate as the sialyl donor. The N,N-diacetylamino sialyl donor appears to be more reactive than its parent acetamido sugar when allowed to react with an disaccharide acceptor under the same glycosylation conditions. The trisaccharides, as well as the intermediate products, were fully characterized by 2D DQF 1H-1H COSY and 2D ROESY spectroscopy.  相似文献   

11.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

12.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

13.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

14.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

15.
This paper deals with new approaches to alpha-Neu5NAc-(2,6)-D-GalN3 building blocks, suitable as glycosylation donors. The major improvement, by comparison with the results of the literature, lies in the glycosylation step of a new d-galactosamine acceptor (tert-butyldimethylsilyl 3-O-acetyl-2-azido-2-deoxy-beta-D-galactopyranoside) with O-methyl-S-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-non-2-ulopyranosyl)onate] dithiocarbonate as the N-acetylneuraminic acid donor. The reaction affords the expected disaccharide in high yield (85%) and a complete alpha-Neu5NAc stereoselectivity. A subsequent oxidation step, eliminating the glycal by-product allows an easier purification. Afterwards, the tert-butyldimethylsilyl disaccharide can be transformed into a donor, after cleavage of the anomeric group in smooth conditions.  相似文献   

16.
Syntheses of some sialic acid-containing nucleotide sugars are reported. The reaction of methyl[(2-hydroxy)ethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto -2- nonulopyranosid]onate (4) with various fully protected hydrogen phosphonates of nucleotides (5a-c) in the presence of 2,4,6-triisopropylbenzenesulfonyl chloride (TPS-Cl), gave, after oxidation and deprotection, the corresponding sialic acid-containing nucleotide sugar analogs (8a-c).  相似文献   

17.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

18.
A synthetic substrate, benzyl 2-acetamido-2-deoxy-3-O-(2-O-methyl-beta-D- galactopyranosyl)-beta-D-glucopyranoside, was demonstrated to be a specific acceptor for the Lewis blood group-specified alpha(1----4)-L-fucosyltransferase from human saliva and stomach mucosa. The fucosyl linkage of the product resulting from the use of this substrate isolated by paper chromatography was characterized by hydrolysis with specific alpha(1----3)/(1----4)-L- fucosidase. The product can be separated by adsorption onto the reverse-phase cartridge and recovered by one-step elution with methanol. The enzymatic properties of alpha(1----4)-L-fucosyltransferase from saliva and stomach mucosa have also been examined using this substrate.  相似文献   

19.
A facile approach towards the synthesis of 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-2-acetamido-2-deoxy-beta-D-glucopyra nos ide, 2-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-2-acetamido-2-deoxy-alpha-D-galactopyranoside, 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-alpha-D-mannopyranoside, and 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)-(1----6)-beta-D-galactopyranoside has been accomplished through the development and use of methyl 3,4-O-isopropylidene-2-O-(4-methoxybenzyl)-1-thio-beta-L-fucopyranoside as the glycosyl donor.  相似文献   

20.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号