首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms underlying oligodendrocyte (OLG) loss and the precise roles played by OLG death in human demyelinating diseases such as multiple sclerosis (MS), and in the rodent model of MS, experimental autoimmune encephalomyelitis (EAE), remain to be elucidated. To clarify the involvement of OLG death in EAE, we have generated transgenic mice that express the baculovirus anti-apoptotic protein p35 in OLGs through the Cre-loxP system. OLGs from cre/p35 transgenic mice were resistant to tumor necrosis factor-alpha-, anti-Fas antibody- and interferon-gamma-induced cell death. cre/p35 transgenic mice were resistant to EAE induction by immunization with the myelin oligodendrocyte glycoprotein. The numbers of infiltrating T cells and macrophages/microglia in the EAE lesions were significantly reduced, as were the numbers of apoptotic OLGs expressing the activated form of caspase-3. Thus, inhibition of apoptosis in OLGs by p35 expression alleviated the severity of the neurological manifestations observed in autoimmune demyelinating diseases.  相似文献   

2.
Clonal deletion in the thymus by apoptosis is involved in purging the immune system of self-reactive T lymphocytes (negative selection). Cysteine proteases (caspases) belonging to the CPP32 family are activated during this process. We have produced transgenic mice expressing baculovirus p35, a broad-range caspase inhibitor. Thymocytes from p35 transgenic mice were resistant in vitro to several apoptosis-inducing agents; this resistance correlated with the inhibition of CPP32-like activity. Negative selection in vivo of thymocytes triggered by two exogenous antigens, staphylococcal enterotoxin B superantigen and an antigenic peptide in the F5 T-cell receptor transgenic model, was specifically inhibited in p35 transgenic mice. Our results provide direct evidence for caspase involvement in negative selection during thymocyte development.  相似文献   

3.
The p35 protein from baculovirus is a broad-range caspase inhibitor and suppresses programmed cell death in animals. We report here the effects of transgenic expression in tobacco of the p35 protein during the hypersensitive response (HR). Expression of p35 causes partial inhibition of nonhost HR triggered by bacteria and gene-for-gene HR triggered by virus. Infection of p35-expressing tobacco plants with Tobacco mosaic virus (TMV) disrupts N-mediated disease resistance, causing systemic spreading of the virus within a resistant background. Mutant variants altered in aspartate residues within the loop region of p35 are inefficient substrates for caspases in vitro, and they do not suppress caspase proteolytic activity in animal systems. Tobacco plants expressing these mutant variants of the p35 protein do not show inhibition of HR cell death or enhanced virus systemic movement. Thus, HR inhibition and TMV systemic spreading phenotype in p35-expressing plants correlate with the ability of the p35 protein to suppress caspase activity in animal systems. In addition, a C-terminal truncated variant of p35 is unable to suppress cell death in animals as well as HR cell death in transgenic tobacco. Our results provide evidence for the participation of caspase-like proteases during the HR. In addition, they suggest that timely activation of cell death is necessary for effective TMV containment within the primary infection site.  相似文献   

4.
Baculovirus p35 protein protects cells from apoptotic cell death by inhibiting caspase activation. We have established transgenic mouse lines specifically expressing p35 in cardiomyocytes, and primary cardiomyocytes isolated from these mice exhibit resistance to staurosporine-induced apoptosis. In a previous study, we observed defects in heart formation associated with abdominal hemorrhage and cardiomyocyte cell death in caspase-8-deficent animals. In order to better understand the etiology of the cardiac defects and embryonic lethality in caspase-8-deficient mice, we crossed these mice with the p35 transgenic animals. Although the newly generated mice still died in utero and exhibited some cardiac defects, cardiomyocyte apoptosis was suppressed and ventricular trabeculation was restored. Thus, cardiomyocyte expression of p35 prevented cell death induced by staurosporine or caspase-8 deficiency. Additionally, our data suggest that caspase-8 plays multiple roles in cardiac development.  相似文献   

5.
Programmed cell death is a fundamental aspect of metazoan development associated with the elaboration of disparate tissues and structures. Specialized cysteine proteases, the caspases, are mediators of cell death; once activated they cleave substrate proteins to dismantle doomed cells. Caspase activity is regulated by several cellular and viral inhibitors. The baculovirus p35 protein blocks the action of a wide range of caspases and inhibits cell death in divergent species. Here, we utilize the Gal4/UAS system to target p35 expression and analyze the requirements of caspase activity for development in Drosophila. We confirm that cell death is essential for proper morphogenesis of the adult male external genitalia and distal portions of the legs. In addition, we find that caspases are also required for elimination of larval epidermal cells and normal elaboration of the adult abdominal cuticle by histoblast derivatives. In particular, rescued p35-expressing larval epidermal cells accumulate along the abdominal midline and are associated with corresponding splits in both dorsal and ventral cuticle structures. This study reveals a novel role for cell death in a specific morphogenetic processes.  相似文献   

6.
Diphtheria toxin A-chain (DT-A) is a potent inhibitor of protein synthesis. As little as a single molecule of DT-A can result in cell death. DT-A gene driven by a tissue-specific promoter is used to achieve genetic ablation of a particular cell lineage. However, this transgenic approach often results in aberrant depletion of unrelated cells. To avoid this, we established a method for specific depletion of a cell population by controlled expression of the DT-A gene via the Cre-loxP system. We produced five transgenic mice carrying CETD construct containing loxP-flanked enhanced green fluorescent protein (EGFP) cDNA and the DT-A gene. Transfection of primary cultured cells derived from CETD transgenic fetus with Cre expression plasmid resulted in extensive cell loss, as expected. Bigenic (double transgenic) offspring obtained by crossbreeding between CETD and MNCE transgenic mice in which Cre expression is controlled by the myelin basic protein (MBP) promoter exhibited embryonic lethality, suggesting expression of Cre at embryonic stages. Intravenous injection of Cre expression vector to CETD mice led to generation of glomerular lesions, probably due to predominant depletion of glomerular epithelial cells. This Cre-loxP-based cell ablation technology is powerful and convenient method of generating mice lacking any chosen cell population.  相似文献   

7.
Hyperimmune response via Fas/Fas-ligand and perforin/granzyme pathways may be essential in pathogenesis of virus-induced fulminant hepatitis. CrmA inhibits activation of caspases and granzyme B, suggesting it may block these pathways. We investigated whether CrmA expression would inhibit Fas-associated lethal hepatitis in mice. We successfully generated AxCALNLCrmA, a recombinant adenovirus expressing CrmA gene with a Cre-mediated switching cassette. We increased CrmA expression level in the liver transfected with AxCALNLCrmA (10(9) pfu) by increasing administration dose (10(7)-10(9) pfu) of AxCANCre, a recombinant, adenovirus-expressing Cre gene. Injection of anti-Fas antibody into the control mice rapidly led to animal death due to massive liver apoptosis, while the apoptosis was dramatically reduced in the CrmA-expressed mice. The animal survival increased with an increase of CrmA expression. The formation of active caspase-3 was markedly inhibited in the crmA-transfected hepatocytes in vitro. These results suggest that crmA is an effective gene that can inhibit immune-related liver apoptosis.  相似文献   

8.
Apoptosis plays an important role in neuronal cell death in both chronic and acute human neurological diseases, including ALS, Huntington's disease, cerebral ischemia, and HIV encephalopathy. We evaluated the ability of an extremely powerful antiapoptotic agent, baculoviral p35, to prevent apoptosis and cell death of human cerebral neurons that undergo severe neurotoxic changes in a culture system when treated with agents that are implicated in human neurological disorders, that is, tumor necrosis factor (TNFalpha) and the HIV proteins Tat and gp120. P35 is a potent broad-spectrum antiapoptotic protein derived from baculovirus, that inhibits nearly all caspases, and has other antiapoptotic actions as well. Adenoviral vectors expressing p35 (Ad. p35) or a control gene (lacZ) efficiently transduced human neurons. Treatment of control cultures with the toxic agents TNFalpha, TNFalpha plus Actinomycin D, or Tat and gp120, induced neurotoxicity and death of neurons. Transduction of neurons with Ad. p35 blocked apoptosis, and eliminated cell death due to TNFalpha, or Tat and gp120. Viral vector transfer of the p35 gene efficiently protects human neurons from TNFalpha, or Tat and gp120-induced apoptosis and cell death. These results suggest that p35 transduction of neurons by viral vectors could be therapeutically useful in the treatment of human neurodegenerative diseases.  相似文献   

9.
采用热激启动子Gmhsp17.5C控制Cre定位重组酶介导的DNA删除系统.在这个系统中,在热激启动子控制下的Cre重组酶的表达导致两侧带有相同方向loxp位点的CaMV35S-GUS片段从转基因烟草(Nicotiana tabacum L.cv.W38)的基因组中删除.通过定量PCR的方法鉴定这个转基因系统,显示了这个系统的重组效率.结果显示在两个小时热激处理后转基因烟草中有41%的CaMV35S-GUS片段被删除.由于热激诱导的定点重组系统有容易操作、对热敏感和无背景表达等优点,因此有利于采用这个系统在转基因植物中进行可诱导的基因操作.  相似文献   

10.
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.  相似文献   

11.
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.  相似文献   

12.
miR-21 is highly expressed in a variety of cancers, suggesting that it might play a role in the process of oncogenesis, as supported by it directly causing pre-B cell lymphomas in transgenic mice. Rm21LG transgenic mice for the conditional co-expression of miR-21 and luciferase (Luc) mediated by Cre/lox P system were generated. The homozygous Rm21LG transgenic mice were visually and readily characterized immediately after birth by whole-body fluorescence imaging. More importantly, miR-21 and Luc were successfully activated in the liver of Rm21LG/Alb-Cre double-transgenic mice, demonstrating that Rm21LG conditional transgenic system could work in a Cre-dependent manner. The combined use of this conditional miR-21 transgenic mouse line, various cell/tissue-specific Cre mouse lines and bioluminescence imaging will be a valuable tool in vivo to uncover the functions of miR-21 as oncomiR in initiating tumors.  相似文献   

13.
There have been few studies on the regulatory elements of the Sry gene, mainly because no Sry-expressing cell lines have yet been established. This paper describes a useful tool for investigating the regulation and upstream region of Sry by means of the in vitro Cre/loxP system. Using plasmids containing the 9.9 kb mouse genomic Sry previously shown to induce testis development in XX transgenic mice, we constructed a Sry/Cre fusion gene plasmid in which Cre expression is controlled by the 5' and 3' untranslated regions of mouse Sry. To distinguish between male and female gonads of 11.5 days post-coitus (d.p.c.) fetuses, double transgenic fetuses carrying both the CAG (cytomegalovirus enhancer and beta-actin promoter)/loxP/lacZ transgene on the autosome and the green fluorescent protein transgene ubiquitously expressed on the Y chromosome were produced by crossing between two transgenic mouse lines. When Sry/Cre plasmids were transfected into the cells that had been prepared from the gonads, brains and livers of double transgenic fetuses, only a small number of X-gal-stained cells were detected among the primary cultured cells from male and female gonads, and none were detected among the cells from the other tissues. The X-gal-positive cells were negative for alkaline phosphatase, indicating that these cells were somatic cells expressing Sry. The Sry/Cre plasmids with a 0.4 kb upstream region of Sry yielded a large number of X-gal-positive cells in the cells from gonads, including various tissues of 11.5 d.p.c. fetuses, indicating the loss of the tissue-specific expression of Sry. The Sry/Cre with a 1.4 kb upstream region maintained tissue-specific activity of Sry. The results indicate that the present in vitro Cre/loxP system using transgenic mice is a simple and useful system for investigating the regulatory element of sex determination-related genes, including Sry.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Neurotoxicity mediated by glutamate is thought to play a role in the neuronal death through intracellular calcium-dependent signaling cascades. Cyclin-dependent kinase 5 (Cdk5) has been proposed as one of the calcium-dependent mediators that may cause neuronal death observed in this disease. Cdk5 is activated in neurons by the association with its activators, p35 or p39. The calcium-activated protease calpain cleaves p35 to its truncated product, p25, which eventually causes the cellular mislocalization and prolonged activation of Cdk5. This deregulated Cdk5 induces cytoskeletal disruption and apoptosis. To examine whether inhibition of the calpain-mediated conversion of p35 to p25 can delay the disease progression of ALS, we generated double transgenic mice in which ALS-linked mutant copper/zinc superoxide dismutase 1 (SOD1G93A) was expressed in a p35-null background. The absence of p35 neither affected the onset and progression of motor neuron disease in the mutant SOD1 mice nor ameliorated the pathological lesions in these mice. Our results provide direct evidence that the pathogenesis of motor neuron disease in the mutant SOD1 mice is independent of the Cdk5 activation by p35 or p25.  相似文献   

15.
The site-specific recombinase Cre is valuable for regulation of gene expression not only in vitro but also in vivo. We previously reported that replication-deficient recombinant adenovirus (rAd) expressing Cre can mediate efficient and strict regulation in 100% of cultured cells. Recently, the constitutive-expression of Cre using retrovirus or lentivirus vector reportedly inhibited cell-growth, but the effect of transient Cre expression have not yet been examined. Here we showed that an excess amount of Cre produced from Cre-expressing rAd caused a deleterious effect in cells even when Cre was transiently expressed. We used three rAds carrying promoters with different activities: the SV40 early promoter (AxSVENCre), the SR alpha promoter (AxSRCre) and the CAG promoter (AxCANCre). Cell toxicity was clearly caused by Cre itself and was distinguishable from that caused by rAd virions when the cytopathic effects of these rAds were compared with that of a control virus lacking the Cre expression unit. Cre toxicity was strongly correlated with the expression level of Cre. Importantly, AxSRCre and AxCANCre gave a 60-fold range of effective MOIs ("effective range") sufficient for gene activation without causing cell toxicity from either the rAd particles or Cre itself, while AxSVENCre failed to give such a range because the expression level of Cre was too low. When Cre was tagged with a nuclear localization signal (NLS), not only its activity but also Cre toxicity was increased fourfold, and the effective range was unchanged. Therefore, AxSRNCre might be more useful to control cell toxicity from the rAd virions than AxSRCre. Cre-induced cell toxicity can be avoided by pre-examining the "effective range" using the purpose cell lines before starting experiments utilizing the experiment of Cre-expressing rAd.  相似文献   

16.
Plants, animals, and several branches of unicellular eukaryotes use programmed cell death (PCD) for defense or developmental mechanisms. This argues for a common ancestral apoptotic system in eukaryotes. However, at the molecular level, very few regulatory proteins or protein domains have been identified as conserved across all eukaryotic PCD forms. A very important goal is to determine which molecular components may be used in the execution of PCD in plants, which have been conserved during evolution, and which are plant-specific. Using Arabidopsis thaliana, we have shown that UV radiation can induce apoptosis-like changes at the cellular level and that a UV experimental system is relevant to the study of PCD in plants. We report here that UV induction of PCD required light and that a protease cleaving the caspase substrate Asp-Glu-Val-Asp (DEVDase activity) was induced within 30 min and peaked at 1 h. This DEVDase appears to be related to animal caspases at the biochemical level, being insensitive to broad-range cysteine protease inhibitors. In addition, caspase-1 and caspase-3 inhibitors and the pan-caspase inhibitor p35 were able to suppress DNA fragmentation and cell death. These results suggest that a YVADase activity and an inducible DEVDase activity possibly mediate DNA fragmentation during plant PCD induced by UV overexposure. We also report that At-DAD1 and At-DAD2, the two A. thaliana homologs of Defender against Apoptotic Death-1, could suppress the onset of DNA fragmentation in A. thaliana, supporting an involvement of the endoplasmic reticulum in this form of the plant PCD pathway.  相似文献   

17.
Site- and time-specific gene targeting in the mouse   总被引:25,自引:0,他引:25  
The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type, will facilitate studies of gene function and the generation of animal models for human diseases. We have established a conditional site-specific recombination system in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand binding domain of the human estrogen receptor (ER), resulting in a tamoxifen-dependent Cre recombinase, Cre-ER(T), that is activated by tamoxifen, but not by estradiol. Transgenic mice were generated expressing Cre-ER(T) under the control of a cytomegalovirus promoter. Administration of tamoxifen to these transgenic mice induced excision of a chromosomally integrated gene flanked by loxP sites in a number of tissues, whereas no excision could be detected in untreated animals. However, the efficiency of excision varied between tissues, and the highest level (approximately 40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ER(T) in a given cell type, Cre-ER(T)-expressing mice were crossed with reporter mice in which expression of Escherichia coli beta-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. Site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ER(T). These results indicate that cell-specific expression of Cre-ER(T) in transgenic mice can be used for efficient tamoxifen-dependent Cre-mediated recombination at loci containing loxP sites, to generate site-specific somatic mutations in a spatiotemporally controlled manner. This conditional site-specific recombination system should allow the analysis of knockout phenotypes that cannot be addressed by conventional gene targeting.  相似文献   

18.
Expression of the PrP glycoprotein is essential for the development of the transmissible spongiform encephalopathy (TSE) or prion diseases. Although PrP is widely expressed in the mouse, the precise relevance of different PrP-expressing cell types to disease remains unclear. To address this, we generated two lines of floxed PrP gene-targeted transgenic mice using the Cre recombinase-loxP system. These floxed mice allow a functional PrP allele to be either switched "on" or "off." We demonstrate control of PrP expression for both alleles following Cre-mediated recombination, as determined by PrP mRNA and protein expression in the brain. Moreover, we show that Cre-mediated alteration of PrP expression in these mice has a major influence on the development of TSE disease. These floxed PrP mice will allow the involvement of PrP expression in specific cell types following TSE infection to be defined, which may identify potential sites for therapeutic intervention.  相似文献   

19.
利用热诱导的位点专一性重组系统在烟草中控制基因表达   总被引:6,自引:1,他引:5  
采用热激启动子Gmhsp17.5C控制Cre定位重组酶介导的DNA删除系统。在这个系统中,在热激启动子控制下的Cre重组酶的表达导致两侧带有相同方向loxp位点的CaMV35S—GUS片段从转基因烟草(Nicotiana tabacum L.cv.W38)的基因组中删除。通过定量PCR的方法鉴定这个转基因系统,显示了这个系统的重组效率。结果显示在两个小时热激处理后转基因烟草中有41%的CaMV35S—Gus片段被删除。由于热激诱导的定点重组系统有容易操作、对热敏感和无背景表达等优点,因此有利于采用这个系统在转基因植物中进行可诱导的基因操作。  相似文献   

20.
Qiu L  Rivera-Pérez JA  Xu Z 《PloS one》2011,6(5):e18778
Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs) in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail) transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号