首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The t(8;21)(q22;q22) translocation, which fuses the ETO gene on human chromosome 8 with the AML1 gene on chromosome 21 (AML1-ETO), is one of the most frequent cytogenetic abnormalities associated with acute myelogenous leukemia (AML). It is seen in approximately 12 to 15% of AML cases and is present in about 40% of AML cases with a French-American-British classified M2 phenotype. We have generated a murine model of the t(8;21) translocation by retroviral expression of AML1-ETO in purified hematopoietic stem cells (HSC). Animals reconstituted with AML1-ETO-expressing cells recapitulate the hematopoietic developmental abnormalities seen in the bone marrow of human patients with the t(8;21) translocation. Primitive myeloblasts were increased to approximately 10% of bone marrow by 10 months posttransplant. Consistent with this observation was a 50-fold increase in myeloid colony-forming cells in vitro. Accumulation of late-stage metamyelocytes was also observed in bone marrow along with an increase in immature eosinophilic myelocytes that showed abnormal basophilic granulation. HSC numbers in the bone marrow of 10-month-posttransplant animals were 29-fold greater than in transplant-matched control mice, suggesting that AML1-ETO expression overrides the normal genetic control of HSC pool size. In summary, AMLI-ETO-expressing animals recapitulate many (and perhaps all) of the developmental abnormalities seen in human patients with the t(8;21) translocation, although the animals do not develop leukemia or disseminated disease in peripheral tissues like the liver or spleen. This suggests that the principal contribution of AML1-ETO to acute myeloid leukemia is the inhibition of multiple developmental pathways.  相似文献   

2.
We have detected a polymorphism in the 3' untranslated region of the AML1 gene, which is located at the breakpoint on chromosome 21 in the t(8;21)(q22;q22.3) translocation often associated with patients with acute myeloid leukemia. Informative CEPH families were genotyped for this polymorphism and used to localize the gene on the linkage map of human chromosome 21. The AML1 gene is located between the markers D21S216 and D21S211, in chromosomal band 21q22.3.  相似文献   

3.
Acute myeloid leukemia (AML-M3) is associated with the translocation t(15;17)(q22;q12-21) which disrupts the retinoic acid receptor alpha (RARA) gene on chromosome 17 and the PML gene on chromosome 15. We report a two-year-old patient with AML-M3 without the usual translocation t(15;17). Cytogenetic studies demonstrated normal appearance of chromosome 15 while the abnormal 17 homologue was apparently a derivative 17, der(17)(17qter-cen-q21:), the rearrangement distinctly shows deletion at 17q21 band and the morphology corresponding to an iso chromosome i(17q-). This case report is a rare cytogenetic presentation of acute promyelocytic leukemia (APML).  相似文献   

4.
A novel translocation t(9;21)(q13;q22) associated with trisomy 4 has been detected in a patient with acute myelomonocytic leukemia (AML,M4) in relapse. The chromosomal translocation results in rearrangement of the RUNX1 gene at 21q22. The DNA sequence rearranged on chromosome 9 remains unidentified. The diversity of the partners involved in translocations implicating RUNX1 suggests that the functional consequences of the abnormality are more due to the truncation of RUNX1 than to the identity of its partner in the rearrangement.  相似文献   

5.
The definition of the genetic linkage map of human chromosomes may be helpful in the analysis of cancer-specific chromosome abnormalities. In the translocation (8;21)(q22;q22), a nonrandom cytogenetic abnormality of acute myelogenous leukemia (AML), we previously observed the transposition of the ETS2 gene located at the 21q22 region from chromosome 21 to chromosome 8. However, no ETS2 rearrangements were detected in the DNA of t(8;21)-positive AML cells. Genetic linkage analysis has allowed us to locate the ETS2 gene relative to other loci and to establish that the breakpoint is at an approximate genetic distance of 17 cM from ETS2. When the information from the linkage map is combined with that from molecular studies, it is apparent that (a) the t(8;21) breakpoint does not affect the ETS2 gene structure or the structure of the other four loci proximal to ETS2: D21S55, D21S57, D21S17, and ERG, and ETS-related gene; and (b) the actual DNA sequence involved in the t(8;21) must reside in a 3-cM genetic region between the D21S58 and the D21S55/D21S57 loci, and remains to be identified.  相似文献   

6.
7.
Summary Chromosome in situ hybridization studies locate c-mos to chromosome band 8q11 in leukemic cells carrying the t(8;21) (q22;q22). This amends the previous assignment of c-mos to chromosome band 8q22 and conforms with its recent assignment to 8q11 in normal cells and in a cell line with a structurally abnormal chromosome 8. C-mos lies proximally to, and distant from, the breakpoint at 8q22 in the t(8;21) and is unlikely to have a role in the onset of acute myeloid leukemia characterized by this translocation.  相似文献   

8.
t(8;21)(q22;q22) is the most frequently observed karyotypic abnormality associated with acute myeloid leukemia (AML), specifically in FAB-M2. Short-term unstimulated bone marrow (BM) and peripheral blood lymphocyte culture showed 47,XX, +4,t(8;21) in all metaphase plates; and interphase and metaphase results of AML-ETO fusion was positive and trisomy of 4 was confirmed with WCP probes. Trisomy 4 in AML with t(8;21) is a rare numerical abnormality. Here we present such case of patient which may constitute a distinctive subtype.  相似文献   

9.

Background:

The human AML1 gene, located on chromosome 21, can be fused to the AML1- eight-twenty-one (ETO) oncoprotein on chromosome eight, resulting in a t(8;21)(q22;q22) translocation. Acute myeloid leukemia (AML) associated with this translocation is considered a distinct AML with a favorable prognosis. Due to the various incidences of the translocation, which is associated with geographic diversities, investigation of molecular epidemiology is important to increase the awareness of physicians and hematologists regarding the frequency this chromosomal aberration.

Methods:

The patients were classified according to the French–American–British classification into eight groups: M0–M7. Determination of the prevalence of the AML1-ETO fusion gene was accomplished by TaqMan real-time PCR. Bone marrow samples from 113 patients with newly-diagnosed, untreated AML -M1, -M2, and -M4, and 20 healthy controls admitted to the Ghaem Hospital in Mashhad, Iran were studied.

Results:

The AML1-ETO fusion gene was detected up 50% of the M2 subgroup and absent in the M1 and M4 subtypes and healthy controls. Comparison of the prevalence of the t(8;21) translocation with results of previous studies showed that it varies between countries. This result may be due to geographic or ethnic differences, or both.

Conclusions:

The relatively high prevalence of the t(8;21) translocation in Iran was similar to that found in other Asian countries. It was closely associated with female gender, relatively young age, and FAB-M2 subtype. Its distribution varied considerably with geographic area. Therefore, further studies are needed to provide epidemiological data important for the establishment of optimal therapeutic strategies applicable to patients of each region. Key Words: Acute myeloid leukemia, AML1-ETO, M2, Prevalence, t(8;21)  相似文献   

10.
Although KIT mutations are present in 20–25% of cases of t(8;21)(q22;q22) acute myeloid leukemia (AML), concurrent development of systemic mastocytosis (SM) is exceedingly rare. We examined the clinicopathologic features of SM associated with t(8;21)(q22;q22) AML in ten patients (six from our institutions and four from published literature) with t(8;21) AML and SM. In the majority of these cases, a definitive diagnosis of SM was made after chemotherapy, when the mast cell infiltrates were prominent. Deletion 9q was an additional cytogenetic abnormality in four cases. Four of the ten patients failed to achieve remission after standard chemotherapy and seven of the ten patients have died of AML. In the two patients who achieved durable remission after allogeneic hematopoietic stem cell transplant, recipient-derived neoplastic bone marrow mast cells persisted despite leukemic remission. SM associated with t(8;21) AML carries a dismal prognosis; therefore, detection of concurrent SM at diagnosis of t(8;21) AML has important prognostic implications.  相似文献   

11.
A case of multiple chromosome aberrations in a patient with CML (chronic myeloid leukemia) in the accelerated phase was described. Cytogenetic and molecular genetic studies revealed the presence of a t(9; 22)(q34; q11) translocation and some additional abnormalities such as t(1; 2)(p36; p21), del(6)(q21), +del(8)(q22), del(18)(q21), and +der(22), part of which is not typical for this kind of pathology. The correlation between the obtained data and the data presented in different publications is considered. A probable connection of the detected changes with previously received treatment and a possible effect of these changes on CML progression are discussed.  相似文献   

12.
Summary A 7-month-old male child with a de novo, seemingly belanced reciprocal 5p/16q translocation and karyotype 46,XY,t(5;16) (p14;q21), resulting from a maternal meiotic error, is described. The clinical findings in this patient are strikingly similar to those in the only patient with partial deletion 16q hitherto described, [del(16)(q21)], indicating that during the 5p/16q rearrangement, 16q material was lost and suggesting that partial or total deletion of the long arm of chromosome 16 distal to band q21 is accompanied by a distinct clinical phenotype.  相似文献   

13.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

14.
15.
The AML1 gene on chromosome 21 is disrupted in the (8;21)(q22;q22) translocation associated with acute myelogenous leukemia and encodes a protein with a central 118-amino-acid domain with 69% homology to the Drosophila pair-rule gene, runt. We demonstrate that AML-1 is a DNA-binding protein which specifically interacts with a sequence belonging to the group of enhancer core motifs, TGT/cGGT. Electrophoretic mobility shift analysis of cell extracts identified two AML-1-containing protein-DNA complexes whose electrophoretic mobilities were slower than those of complexes formed with AML-1 produced in vitro. Mixing of in vitro-produced AML-1 with cell extracts prior to gel mobility shift analysis resulted in the formation of higher-order complexes. Deletion mutagenesis of AML-1 revealed that the runt homology domain mediates both sequence-specific DNA binding and protein-protein interactions. The hybrid product, AML-1/ETO, which results from the (8;21) translocation and retains the runt homology domain, both recognizes the AML-1 consensus sequence and interacts with other cellular proteins.  相似文献   

16.
This paper presents the results of a cytogenetic analysis in 139 Tunisian patients with de novo acute myeloid leukemia (AML), including 27 children aged 1-15 years and 112 adults. Mean age was 32 (range 1-75) and the M/F ratio was 1.43. Of our patients, 45% had apparently normal karyotypes. Acquired chromosome aberrations were found in 77 (55% ) patients. t(8;21) was identified in 27 patients (19%); t(15;17) in 13 patients (9%); deletion 7q or monosomy 7 in seven patients (5%); +8 in seven patients (5%); abnormal 16 in four patients (3%); 11q23 rearrangements in two patients (2%) and del(5q), in one patient (1%). The remaining 16 patients had miscellaneous clonal abnormalities. Specific translocations associated with the FAB type were found: t(8;21) with AML2 and t(15;17) with AML3. We concluded that our study in a Tunisian population confirmed the relation between some specific abnormalities and the FAB classification. We found a higher incidence for t(8;21) than usually described.  相似文献   

17.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

18.
As a means of characterizing the distal long arm of chromosome 5, in particular, the region spanning 5q23-->q31, we analyzed somatic cell hybrids prepared from cells with overlapping chromosomal rearrangements. In one hybrid, the derivative chromosome 5 from a patient with acute myeloid leukemia (AML) de novo, whose bone marrow cells had a balanced translocation, t(5;7)(q31;q22), involving chromosome band 5q31, was isolated in a somatic cell hybrid (B294). In addition, we prepared somatic cell hybrids from a lymphoblastoid cell line (CC) derived from a patient who has a constitutional interstitial deletion of chromosome 5 spanning 5q23.1-->q31.1. By a combination of Southern hybridization analysis and fluorescent in situ hybridization, we constructed a map dividing 5q23-->q31 into four regions. We can assign genes to these regions and relate them to anonymous RFLP markers that have been genetically mapped.  相似文献   

19.
Summary Report is given of a mentally retarded and dysmorphic patient with a partial monosomy 8q, resulting from a de novo translocation t(4;8)(q13; q213).Determination of erythrocyte gluthathione reductase (E-GSR) activity in the proposita shows activity in the normal range. Previous evidence for of the assignment of E-GSR locus to the short arm of chromosome 8 is confirmed.  相似文献   

20.
We describe an 8-years old female with supernumerary chromosome der(21)t(4;21)(q25;q22) resulting in partial trisomy 4q25-qter and partial trisomy 21(pter-q22). The extra material was originated from a reciprocal balanced translocation carrier mother (4q;21q). Karyotyping was confirmed by FISH using whole chromosome painting probes for 4 and 21q and using 21q22.13-q22.2 specific probe to rule out trisomy of Down syndrome critical region. Phenotypic and cytogenetic findings were compared with previously published cases of partial trisomy 4q and 21q. Our patient had the major criteria of distal trisomy 4q namely severe psychomotor retardation, growth retardation, microcephaly, hearing impairment, specific facies (broad nasal root, hypertelorism, ptosis, narrow palpebral fissures, long eye lashes, long philtrum, carp like mouth and malformed ears) and thumbs and minor feet anomalies. In spite of detection of most of the 3 copies of chromosome 21, specific features of Down syndrome (DS) were lacked in this patient, except for notable bilateral symmetrical calcification of basal ganglia. This report represents further delineation of the phenotype-genotype correlation of trisomy 4q syndrome. It also supports that DS phenotype is closely linked to 21q22. Nevertheless, presence of basal ganglia calcification in this patient may point out to a more proximal region contributing in its development in DS, or that genes outside the critical region may influence or control manifestations of DS features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号