首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fc gamma R-mediated killing by eosinophils   总被引:6,自引:0,他引:6  
In this report we present data on the ability of the different Fc gamma R present on eosinophils to mediate killing of erythroid and tumor targets, and on a comparison of eosinophil and neutrophil Fc gamma R-mediated killing. Erythroid target killing was assessed using chicken erythrocytes (CE) and heteroantibodies composed of Fab fragments of anti-CE antibodies covalently coupled to Fab fragments of anti-Fc gamma R antibodies. Such anti-CE x anti-Fc gamma R reagents permit linkage of CE target cells with the FcR molecules on the eosinophil or neutrophil effector cells. Tumor target killing was assessed using hybridoma cell lines (HC) bearing anti-Fc gamma R antibodies on their cell surface. Freshly isolated eosinophils and neutrophils constitutively express similar amounts of the low affinity Fc gamma R, Fc gamma RII on their cell surface, but neither cell type expresses the high affinity Fc gamma R, Fc gamma RI. In contrast, eosinophils have only about 5% as much of the low affinity Fc gamma R found on human granulocytes and large granular lymphocytes (Fc gamma RIII) as neutrophils. Untreated, freshly prepared eosinophils or neutrophils did not lyse any of the anti-Fc gamma R bearing HC nor did they lyse CE in the presence of anti-Fc gamma R containing heteroantibodies. Upon treatment with granulocyte monocyte-CSF (GM-CSF), both cell types lysed HC-bearing antibody to Fc gamma RII (HC IV.3A) and CE in the presence of anti-CE x anti-Fc gamma RII heteroantibodies. However, neither cell type lysed HC-bearing antibody to Fc gamma RI or Fc gamma RIII, or CE in the presence of anti-CE x anti-Fc gamma RI HA. Treatment with GM-CSF did not significantly alter the number of Fc gamma R on either cell type. Treatment of neutrophils with IFN-gamma for 18 h induced the expression of Fc gamma RI on these cells and their ability to lyse anti-Fc gamma RI- or Fc gamma RII-bearing HC and CE through Fc gamma RI, Fc gamma RII, and Fc gamma RIII. In contrast, 6-h treatment of eosinophils or neutrophils with IFN-gamma induced neither Fc gamma RI expression on either cell type nor killing of HC or CE through Fc gamma R. In summary, incubation with GM-CSF, induced eosinophils and neutrophils to kill anti-Fc gamma RII-bearing HC and to lyse CE through Fc gamma RII. This augmented killing was not associated with enhanced expression of Fc gamma RII.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

3.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

4.
T cell-derived cytokines IFN-gamma and IL-4 have different regulatory effects on two functionally important molecules on human monocytes: MHC class II Ag and the Fc receptor for monomeric IgG, Fc gamma RI (CD64). MHC class II Ag, and Fc gamma RI are both upregulated in the presence of IFN-gamma. IL-4 induces MHC class II Ag expression but reduces Fc gamma RI expression. Recently, we showed that the cytokine IL-10 also affects MHC class II Ag expression. Here, we demonstrate that in contrast to the down-regulation of MHC class II Ag expression, IL-10 stimulates Fc gamma RI expression on human monocytes comparable to the levels of Fc gamma RI expression induced by IFN-gamma. The IL-10-induced Fc gamma RI expression is specific because anti-IL-10 antibodies completely reverse the IL-10-induced surface expression of Fc gamma RI and correlate with an enhanced capacity to lyse anti-D-coated human rhesus-positive erythrocytes. IL-10 fails to induce the expression of Fc gamma RII (CD32) and Fc gamma RIII (CD16). Furthermore, we demonstrate that IL-10 is able to prevent down-regulation in surface membrane expression of all three Fc gamma R that can be found when monocytes are cultured in the presence of IL-4. In contrast to IFN-gamma, IL-10 does not restore the reduced antibody-dependent cellular cytotoxicity (ADCC) activity of IL-4-cultured monocytes. Together, these results show that, similar to IFN-gamma, IL-10 is capable of enhancing Fc gamma R expression and ADCC activity, and that IFN-gamma, IL-4, and IL-10 have different regulatory effects on both monocyte Ag-presenting capacity and ADCC activity.  相似文献   

5.
The three types of IgG FcR (Fc gamma RI, Fc gamma RII, Fc gamma RIII) on human leukocytes play an important role in elimination of antibody-coated infectious agents. To further understand the role of the different Fc gamma R in mediating this killing, we examined the ability of human myeloid and lymphoid cells to kill the protozoan Toxoplasma gondii in the presence of antitoxoplasma IgG or bispecific antibodies. Although human myeloid cells (monocytes, macrophages, neutrophils, and eosinophils) all lysed unsensitized T. gondii, killing by these cells was significantly enhanced by opsonization with antitoxoplasma rabbit IgG. Human lymphocytes, however, did not lyse T. gondii unless the parasites were coated with antibody. The role of antibody and Fc gamma R in mediating ADCC of T. gondii was then examined using bispecific antibodies made by chemically cross-linking Fab fragments of antitoxoplasma antibodies to Fab fragments of antibodies specific for human leukocyte surface Ag, including Fc gamma R. Thus, simultaneous binding of these bispecifics to parasites and effector cells allowed an evaluation of killing when T. gondii were targeted to each Ag independently. Bispecifics which targeted T. gondii to Fc gamma RI, II or III enhanced lysis by monocytes. However, similar results were obtained with bispecifics targeting T. gondii to non-Fc gamma R Ag (CD11b or beta 2-microglobulin) on monocytes. Likewise, polymorphonuclear leukocytes mediated significantly more lysis in the presence of bispecifics linking T. gondii to Fc gamma RII, Fc gamma RIII, or the two non-Fc gamma R Ag CD11b and beta 2-microglobulin. Thus, although human myeloid cells did not require antibody-Fc gamma R triggering to kill T. gondii, antibody appeared to enhance lysis by capturing and directing the parasites to the effector cell surface. Human lymphocytes, in contrast, mediated significant lysis of T. gondii only in the presence of bispecifics targeting T. gondii to Fc gamma RIII, indicating a requirement for specific triggering of Fc gamma RIII for killing by large granular lymphocytes. Consequently, using bispecifics to compare targeting to specific Ag, both non-Fc gamma R and Fc gamma R, allowed determination of the role of antibody-Fc gamma R interactions in T. gondii killing. In addition, these studies demonstrate the potential of bispecifics in determining the role of specific Ag in killing of or infection by pathogens.  相似文献   

6.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

7.
To further understand the mechanism(s) of antibody-dependent cell-mediated cytotoxicity (ADCC) by various effector populations, we have examined the extracellular Ca++ and Mg++ requirements for ADCC performed by lymphocytes, monocytes, polymorphonuclear leukocytes and peritoneal macrophages. We have used the anti-Fc gamma R-bearing hybridoma cell lines (HC) as self directed targets for ADCC to analyse the triggering ability of each of the three defined Fc gamma R; Fc gamma RI, Fc gamma RII, and Fc gamma RIII. Lymphocyte killing of the anti-Fc gamma RIII bearing HC (HC 3G8) was Ca++ dependent, but Mg++ independent. In contrast, monocytes and PMN killed the anti-Fc gamma RI- (HC 32) and the anti-Fc gamma RII- (HC IV.3) bearing HC in a Mg++-dependent, Ca++-independent fashion. In addition, freshly prepared monocytes were able to kill HC 3G8 in a Mg++-dependent, Ca++-independent fashion, indicating that low levels of Fc gamma RIII may be functionally detected on monocytes. Peritoneal macrophages were able to kill all three of the anti-Fc gamma R bearing HC in a Mg++-dependent, Ca++-independent fashion. Thus, the same target is lysed by myeloid cells in the presence of Mg++ without Ca++ and by lymphoid cells in the presence of Ca++ without Mg++. These results suggest that at least two distinct mechanisms of ADCC exist that depend on the type of effector cell mediating antibody-dependent killing and not necessarily on the Fc gamma R type triggered.  相似文献   

8.
Different classes of receptors for the Fc moiety of IgG (Fc gamma R) have been defined on human monocytes and macrophages: Fc gamma RI, Fc gamma RII, and Fc gamma RIII. All three classes are capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Fc gamma RI, which binds monomeric human IgG (hIgG) with high affinity, was shown an effective cytotoxic trigger molecule on different types of cells. In vitro, the inhibition of Fc gamma RI-mediated ADCC by hIgG is well documented. The low affinity receptor classes, Fc gamma RII and Fc gamma RIII, are not blocked by monomeric hIgG. Because monomeric hIgG is present at high concentrations in plasma and interstitial fluids it has been postulated inhibitory in vivo. We investigated the effect of rIFN-gamma on macrophage Fc gamma RI-mediated ADCC in the presence of low doses hIgG. With human E sensitized with hIgG as target cells, Fc gamma RI was studied selectively. We found that rIFN-gamma enhances both expression and cell surface density of Fc gamma RI on cultured peripheral blood monocytes. Furthermore, this cytokine partially reversed the inhibitory effect of monomeric hIgG on ADCC. More interestingly, we found that the cytolytic mechanism of monocyte-derived macrophages changed completely after prolonged culture with rIFN-gamma. Monocytes cultured for 9 days in control medium mediate predominantly phagocytosis. After long term rIFN-gamma stimulation (9 days), monocyte-derived macrophages almost completely lost the capacity to perform phagocytosis. Interestingly, they became highly efficient in mediating extracellular lysis of human E sensitized with hIgG. Short term rIFN-gamma stimulated monocyte-derived macrophages (for the last 40 h of culture) were found to mediate both phagocytosis and extracellular lysis. Our findings suggest that in vivo rIFN-gamma-stimulated macrophages may be most efficient in Fc gamma RI-mediated cytolysis as a consequence of a changed cytolytic mechanism in combination with enhanced Fc gamma RI density.  相似文献   

9.
Human polymorphonuclear leukocytes (PMN) express two classes of Fc gamma R: Fc gamma RII the 42-kDa receptor with a traditional membrane spanning domain and cytoplasmic tail and Fc gamma RIIIPMN the 50- to 80-kDa receptor with a glycosyl-phatidylinositol membrane anchor expressed on PMN. To explore the capacity of Fc gamma RIIIPMN to generate intracellular signals, we have analyzed the ability of Fab and F(ab')2 anti-Fc gamma R mAb to induce actin filament assembly, a prerequisite for motile behaviors. Multivalent ligation of Fc gamma RIIIPMN, independent of Fc gamma RII, results in an increase in F-actin content that is [Ca2+]i dependent. Multivalent ligation of Fc gamma RII also initiates actin polymerization but uses a [Ca2+]i-independent initial pathway. In addition to providing a mechanism for Fc gamma RIIIPMN triggered effector functions, the increase in F-actin and [Ca2+]i generated by Fc gamma RIIIPMN ligation also serves as a "priming" signal to modify PMN responses to other stimuli. Experiments using erythrocytes specifically coated with anti-Fc gamma RII Fab demonstrate that cross-linking of Fc gamma RIIIPMN with anti-Fc gamma RIII F(ab')2 enhances phagocytosis mediated by Fc gamma RII. Thus, Fc gamma RIIIPMN, a glycosyl-phosphatidylinositol anchored protein, may contribute directly to an intracellular program of actin assembly that may trigger and prime neutrophil effector functions.  相似文献   

10.
《The Journal of cell biology》1994,125(6):1407-1416
Cooperation among plasma membrane receptors in activating signal transduction cascades is not well understood. For almost 20 years, it has been clear that when a particulate foreign body is opsonized with complement as well as IgG, the efficiency of IgG effector functions is markedly enhanced. However, the molecular mechanisms involved in cooperation between IgG Fc receptors and complement receptors have not been elucidated. In this work, we show that when human neutrophils (PMN) are plated on a surface coated with both anti-CR3 and anti-Fc gamma RIII antibodies, the respiratory burst which occurs is equivalent to that stimulated by anti-Fc gamma RII. The CR3 ligand iC3b is as effective as anti-CR3 for cooperating with anti-Fc gamma RIII in generation of a respiratory burst. The synergy between CR3 and Fc gamma RIII for activating the NADPH oxidase is abolished by Fab of anti-Fc gamma RII. Nonetheless, the observed synergy is not an artifact of unintended Fc gamma RII ligation, since (a) only this combination of antibodies works to generate H2O2; (b) coating plates with either of the antibodies alone cannot activate the respiratory burst at any dose; (c) LAD (CR3 deficient) cells, which are perfectly competent to mount a respiratory burst when Fc gamma RII is engaged, are incapable of activating the respiratory burst when adherent to wells coated with anti-Fc gamma RIII and anti-CR3; (d) direct engagement of Fc gamma RII activates the respiratory burst by a pathway pharmacologically distinguishable from the synergistic respiratory burst. Fc gamma RIII/CR3 synergy is abolished by cytochalasin B and herbimicin, suggesting that both the actin cytoskeleton and tyrosine phosphorylation are necessary for activation of the synergistic respiratory burst. Further analysis shows that CR3 and Fc gamma RIII have distinct roles in activation of this Fc gamma RII-dependent assembly of the NADPH oxidase. Ligation of CR3 is sufficient to lead to Fc gamma RII association with the actin cytoskeleton on the adherent PMN surface. Coligation of Fc gamma RIII is required for tyrosine phosphorylation of Fc gamma RII. These data are consistent with a model in which phosphorylation of Fc gamma RII or a closely associated substrate initiates activation of a signal transduction pathway leading to oxidase assembly. These are the first data to demonstrate a molecular mechanism for synergy between IgG Fc and complement receptors in activation of phagocyte effector functions.  相似文献   

11.
12.
Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX.  相似文献   

13.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

14.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

17.
The FcR for IgG on the plasma membrane of cells of the mononuclear phagocyte system mediate a number of different biologic responses such as phagocytosis, pinocytosis, superoxide generation, and antibody-dependent cytotoxicity. In the interest of understanding the pathophysiology of these processes we have begun to characterize the FcR for IgG on two readily available sources of macrophages--the lung and the peritoneum--using antireceptor mAb. We find that all three of the distinct classes of FcR for IgG which have been described in man are present on both pulmonary and peritoneal macrophages. Most monocytes, we suggest, bear low numbers of Fc gamma RIII whereas a small subpopulation of monocytes expresses substantial numbers of Fc gamma RIII. Furthermore, we find that two different forms of Fc gamma RIII differ in their capacity to bind anti-Fc gamma RIII mab 3G8 in the presence of human IgG. Human IgG does not block the binding of mAb 3G8 to neutrophils, but it does block 3G8 binding to macrophages and large granular lymphocytes; this finding correlates with the expression of the two Fc gamma RIII genes, I and II, in man. Studies aimed at illuminating the molecular mechanisms of Fc gamma R-mediated processes in macrophages will require consideration of the receptors of all three classes.  相似文献   

18.
Fc receptors and immunoglobulin binding factors   总被引:5,自引:0,他引:5  
W H Fridman 《FASEB journal》1991,5(12):2684-2690
Receptors for the Fc portion of Ig (Fc receptors, FcR) are found on all cell types of the immune system. Three types of FcR react with IgG: Fc gamma RI is a high-affinity receptor binding IgG monomers whereas Fc gamma RII and Fc gamma RIII are low-affinity receptors binding IgG immune complexes; the three types of Fc gamma R are members of the Ig superfamily. Two FcR react with IgE:Fc epsilon RI is a multichain receptor binding IgE with high affinity; it is composed of an IgE-binding alpha chain, homologous to Fc gamma RIII, and of gamma and beta chains that are necessary for receptor expression and signal transduction. The low-affinity Fc epsilon RII is the only FcR described so far that is not a member of the Ig superfamily but resembles animal lectins; it is composed of a transmembrane chain with an intracytoplasmic NH2 terminus. Fc alpha R has homology with Fc gamma R and is a member of the Ig superfamily. Receptors for IgM and IgD are not characterized yet. Finally, Ig transport is made by FcR-like molecules such as the poly-Ig receptor or an MHC-like receptor found on neonatal intestine. A remarkable property of most FcR is the fact that they are released in cell supernatants and circulate in biological fluids as immunoglobulin binding factors (IBF) generated either by cleavage at the cell membrane or by splicing of FcR transmembrane exon. Immunoglobulin binding factors may interfere with Ig-mediated functions and have direct immunoregulatory activities. Involvement of FcR or IBF has been postulated in several diseases, and monoclonal antibodies to FcR are beginning to be used in therapeutics, particularly to target cytotoxic effector lymphocytes and monocytes to tumor cells.  相似文献   

19.
The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Individual murine Fc gamma R isoforms were transfected into rat basophilic leukemia cells and after cross-linking the FcR, changes in the phosphorylation of protein tyrosines, in the level of intracellular Ca2+, in the hydrolysis of phosphoinositides, and in the release of arachidonic acid metabolites and hexosaminidase were monitored. Cross-linking of Fc gamma RIII initiated all of these early and late biochemical functions, and although they were quantitatively somewhat smaller, the responses were qualitatively indistinguishable from those stimulated by the endogenous Fc epsilon RI. However, despite ample expression, neither Fc gamma RII-b1 nor Fc gamma RII-b2 stimulated these functions when cross-linked. The functional differences between Fc gamma RII and Fc gamma RIII were studied further by assessing the responses to cross-linking of the endogenous Fc gamma R (Fc gamma RII-b1, Fc gamma RII-b2, and Fc gamma RIII) on P815 mouse mastocytoma cells that had been transfected with normal or functionally defective Fc epsilon RI. Two types of mutant subunits had previously been observed to impair the activity of Fc epsilon RI: gamma-chains missing the cytoplasmic domain, and beta-chains missing the COOH-terminal cytoplasmic domain. In both types of transfectants the functional inhibition of the endogenous Fc gamma R paralleled that of the transfected Fc epsilon RI. These results are consistent with the gamma subunit being associated with the functions of Fc gamma RIII as well as of Fc epsilon RI. The functional results also complement the recently reported evidence that Fc gamma RIII can interact with Fc epsilon RI beta-subunits (J. Exp. Med. 175:447, 1992).  相似文献   

20.
A major new challenge for vaccine development is to target APC such as monocytes and macrophages for efficient Ag processing and presentation. It has been shown that Fc gamma R-mediated uptake of Ag-antibody complexes can enhance Ag presentation by myeloid cells at least 100-fold, and directing Ag to Fc gamma R in mice brings about a substantial increase in the effectiveness of immunization while eliminating the requirement for adjuvant. It has not been determined which of the three subclasses of human Fc gamma R on myeloid cells (Fc gamma RI, Fc gamma RII, or Fc gamma RIII) function to enhance Ag presentation. We have targeted our Ag (TT) to each of the three subclasses of human Fc gamma R on monocytes using Fc gamma R subclass-specific mAb-TT conjugates, and have measured TT presentation by monitoring T cell proliferation in response to TT. In addition, we have examined enhanced Ag presentation mediated by a human IgG1 (HIgG1) anti-TT mAb. All anti-Fc gamma R-TT conjugates enhanced Ag presentation. HIgG1 anti-TT, in monomeric form, enhanced Ag presentation through Fc gamma RI only. Anti-Fc gamma RI-Ag conjugates appear to be optimal for application as vaccines. They are monocyte/macrophage-specific, are very efficiently processed and presented, and enhance Ag presentation despite occupation of Fc gamma RI with HIgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号