首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The tryptase locus on mouse chromosome 17A3.3 contains 13 genes that encode enzymatically active serine proteases with different tissue expression profiles and substrate specificities. Mouse mast cell protease (mMCP) 6, mMCP-7, mMCP-11/protease serine member S (Prss) 34, tryptase 6/Prss33, tryptase ε/Prss22, implantation serine protease (Isp) 1/Prss28, and Isp-2 are constitutively exocytosed enzymes. We now demonstrate that tryptase 5/Prss32, pancreasin/Prss27, and testis serine protease-1 are inserted into plasma membranes via glycosylphosphatidylinositol (GPI) anchors analogous to Prss21, and that these serine proteases can be released from the cell’s surface by a phosphatidylinositol-specific phospholipase C. These data suggest that the C-terminal residues play key roles in determining where tryptases compartmentalize in cells. GPI-anchored proteins are targeted to lipid rafts. Thus, our identification of a number of GPI-anchored tryptases whose genes reside at mouse chromosome 17A3.3 also implicates important biological functions for this new family of serine proteases on the surfaces of cells.  相似文献   

5.
6.
Previously, this laboratory identified clusters of alpha-, beta-, and mast cell protease-7-like tryptase genes on human chromosome 16p13.3. The present work characterizes adjacent genes encoding novel serine proteases, termed gamma-tryptases, and generates a refined map of the multitryptase locus. Each gamma gene lies between an alpha1H Ca2+ channel gene (CACNA1H) and a betaII- or betaIII-tryptase gene and is approximately 30 kb from polymorphic minisatellite MS205. The tryptase locus also contains at least four tryptase-like pseudogenes, including mastin, a gene expressed in dogs but not in humans. Genomic DNA blotting results suggest that gammaI- and gammaII-tryptases are alleles at the same site. betaII- and betaIII-tryptases appear to be alleles at a neighboring site, and alphaII- and betaI-tryptases appear to be alleles at a third site. gamma-Tryptases are transcribed in lung, intestine, and in several other tissues and in a mast cell line (HMC-1) that also expresses gamma-tryptase protein. Immunohistochemical analysis suggests that gamma-tryptase is expressed by airway mast cells. gamma-Tryptase catalytic domains are approximately 48% identical with those of known mast cell tryptases and possess mouse homologues. We predict that gamma-tryptases are glycosylated oligomers with tryptic substrate specificity and a distinct mode of activation. A feature not found in described tryptases is a C-terminal hydrophobic domain, which may be a membrane anchor. Although the catalytic domains contain tryptase-like features, the hydrophobic segment and intron-exon organization are more closely related to another recently described protease, prostasin. In summary, this work describes gamma-tryptases, which are novel members of chromosome 16p tryptase/prostasin gene families. Their unique features suggest possibly novel functions.  相似文献   

7.
The trypsin-like serine protease marapsin is a member of the large protease gene cluster at human chromosome 16p13.3, which also contains the structurally related proteases testisin, tryptase epsilon, tryptase gamma, and EOS. To gain insight into the biological functions of marapsin, we undertook a detailed gene expression analysis. It showed that marapsin expression was restricted to tissues containing stratified squamous epithelia and was absent or only weakly expressed in all other tissues, including the pancreas. Marapsin was constitutively expressed in nonkeratinizing stratified squamous epithelia of human esophagus, tonsil, cervix, larynx, and cornea. In the keratinizing stratified squamous epidermis of skin, however, its expression was induced only during epidermal hyperproliferation, such as in psoriasis and in murine wound healing. In fact, marapsin was the second most strongly up-regulated protease in psoriatic lesions, where expression was localized to the upper region of the hyperplastic epidermis. Similarly, in the hyperproliferative epithelium of regenerating murine skin wounds, marapsin localized to the suprabasal layers, where keratinocytes undergo squamous differentiation. The transient up-regulation of marapsin, which closely correlated with re-epithelialization, was virtually absent in a genetic mouse model of delayed wound closure. These results suggested a function during the process of re-epithelialization. Furthermore, in reconstituted human epidermis, a model system of epidermal differentiation, members of the IL-20 subfamily of cytokines, such as IL-22, induced marapsin expression. Consistent with a physiologic role in marapsin regulation, IL-22 was also strongly expressed in re-epithelializing skin wounds. Marapsin's restricted expression, localization, and cytokine-inducible expression suggest a role in the terminal differentiation of keratinocytes in hyperproliferating squamous epithelia.  相似文献   

8.

Background  

Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor binding protein (IGFBP) protease expressed in the placenta and upregulated in pregnancies complicated by pre-eclampsia. The mechanism linking PAPPA2 expression and pre-eclampsia and the consequences of altered PAPPA2 expression remain unknown. We previously identified PAPPA2 as a candidate gene for a quantitative trait locus (QTL) affecting growth in mice and in the present study examined whether this QTL affects placental PAPPA2 expression and, in turn, placental or embryonic growth.  相似文献   

9.
The human tissue kallikrein (KLK) family of serine proteases, which is important in post-translational processing events, currently consists of just three genes-tissue kallikrein (KLK1), KLK2, and prostate-specific antigen (PSA) (KLK3)-clustered at chromosome 19q13. 3-13.4. We identified an expressed sequence tag from an endometrial carcinoma cDNA library with 50% identity to the three known KLK genes. Primers designed to putative exon 2 and exon 3 regions from this novel kallikrein-related sequence were used to polymerase chain reaction-screen five cosmids spanning 130 kb around the KLK locus on chromosome 19. This new gene, which we have named KLK4, is 25 kb downstream of the KLK2 gene and follows a region that includes two other putative KLK-like gene fragments. KLK4 spans 5.2 kb, has an identical genomic structure-five exons and four introns-to the other KLK genes and is transcribed on the reverse strand, in the same direction as KLK1 but opposite to that of KLK2 and KLK3. It encodes a 254-amino acid prepro-serine protease that is most similar (78% identical) to pig enamel matrix serine protease but is also 37% identical to PSA. These data suggest that the human kallikrein gene family locus on chromosome 19 is larger than previously thought and also indicate a greater sequence divergence within this family compared with the highly conserved rodent kallikrein genes.  相似文献   

10.
11.
Mouse mast cell protease 11 (mMCP-11) is the most recently identified member of the mouse mast cell tryptase family. This tryptase is preferentially produced by basophils in contrast to other members that are expressed by mast cells but not basophils. Although blood-circulating basophils have long been considered as minor and redundant relatives of tissue-resident mast cells, recent studies illustrated that basophils and mast cells play distinct roles in vivo. To explore the in vivo role of basophil-derived mMCP-11, here we prepared recombinant mMCP-11 and its protease-dead mutant. Subcutaneous injection of the wild-type mMCP-11 but not the mutant induced edematous skin swelling with increased microvascular permeability in a dose-dependent manner. No apparent infiltration of proinflammatory cells including neutrophils and eosinophils was detected in the skin lesions. The cutaneous swelling was abolished by the pretreatment of mice with indomethacin, a cyclooxygenase inhibitor, suggesting the major contribution of prostaglandins to the microvascular leakage. Of note, the cutaneous swelling was elicited even in mast cell-deficient mice, indicating that mast cells are dispensable for the mMCP-11-induced cutaneous swelling. Thus, basophil-derived mMCP-11 can induce microvascular leakage via prostaglandins in a mast cell-independent manner, and may contribute to the development of basophil-mediated inflammatory responses.  相似文献   

12.
GST pi (GSTP) is a member of the glutathione S-transferase (EC 2.5.1.18; GST) family of enzymes that catalyse the conjugation of electrophilic species with reduced glutathione and thus play an important role in the detoxification of electrophilic metabolites. Deletion of GSTP in mice has previously been shown to lead to enhanced susceptibility to chemical-induced skin carcinoma, consistent with its known metabolic functions. A decreased susceptibility to paracetamol hepatotoxicity has also been observed, which has not been fully explained. One possibility is that deletion of the GSTP gene locus results in compensatory changes in other proteins involved in defence against chemical stress. We have therefore used complementary protein expression profiling techniques to perform a systematic comparison of the protein expression profiles of livers from GSTP null and wild-type mice. Analysis of liver proteins by two-dimensional electrophoresis confirmed the absence of GSTP in null mice whereas GSTP represented 3-5% of soluble protein in livers from wild-type animals. There was a high degree of quantitative and qualitative similarity in other liver proteins between GSTP null and wild-type mice. There was no evidence that the absence of GSTP in null animals resulted in enhanced expression of other GST isoforms in the null mice (GST alpha, 1.48%, GST mu, 1.68% of resolved proteins) compared with the wild-type animals (GST alpha, 1.50%, GST mu, 1.40%). In contrast, some members of the thiol specific antioxidant family of proteins, notably antioxidant protein 2 and thioredoxin peroxidases, were expressed at a higher level in the GSTP null mouse livers. These changes presumably reflect the recently described role of GSTP in cell signalling and may underlie the protection against paracetamol toxicity seen in these animals.  相似文献   

13.
The variable region of the heavy chain of a prototypic anti-DNA autoantibody from the lupus-prone mouse, MRL-lpr/lpr, was cloned and sequenced. The VH and JH genes expressed by this antoantibody were found to be identical to germ line genes from the nonautoimmune mouse strain, BALB/c. The D gene of this autoantibody differed by one nucleotide from several members of the germ line SP2 family, but has been found in expressed D genes from several strains of mice. These results show that a normal mouse strain contains all of the structural information necessary for the expression of the heavy chain variable region of a lupus autoantibody. A fragment that is present in both BALB/c and MRL mice is highly homologous in both coding and flanking sequences to the autoantibody VH gene (VH130) and is the same size as the BALB/c germ line gene. This suggests that these two strains may share the same allele of this VH gene, despite the fact that they are polymorphic for this VH gene family. Other mouse strains that are polymorphic for this locus contained one to three VH genes that were highly related to VH130 in both coding and flanking regions. Thus, VH genes that may be allelic to the antibody VH gene or that may have arisen by gene conversion, unequal crossing over or gene duplication, are conserved in many mouse strains.  相似文献   

14.
15.
During studies to determine a role for tumor necrosis factor (TNF) in herpes simplex virus type 1 (HSV-1) infection using TNF receptor null mutant mice, we discovered a genetic locus, closely linked to the TNF p55 receptor (Tnfrsf1a) gene on mouse chromosome 6 (c6), that determines resistance or susceptibility to HSV-1. We named this locus the herpes resistance locus, Hrl, and showed that it also mediates resistance to HSV-2. Hrl has at least two alleles, Hrl(r), expressed by resistant strains like C57BL/6 (B6), and Hrl(s), expressed by susceptible strains like 129S6 (129) and BALB/c. Although Hrl is inherited as an autosomal dominant gene, resistance to HSV-1 is strongly sex biased such that female mice are significantly more resistant than male mice. Analysis of backcrosses between resistant B6 and susceptible 129 mice revealed that a second locus, tentatively named the sex modifier locus, Sml, functions to augment resistance of female mice. Besides determining resistance, Hrl is one of several genes involved in the control of HSV-1 replication in the eye and ganglion. Remarkably, Hrl also affects reactivation of HSV-1, possibly by interaction with some unknown gene(s). We showed that Hrl is distinct from Cmv1, the gene that determines resistance to murine cytomegalovirus, which is encoded in the major NK cell complex just distal of p55 on c6. Hrl has been mapped to a roughly 5-centimorgan interval on c6, and current efforts are focused on obtaining a high-resolution map for Hrl.  相似文献   

16.
17.
The role of proteases in pathogenesis is well established for several microorganisms but has not been described for Yersinia enterocolitica. Previously, we identified a gene, hreP, which showed significant similarity to proteases in a screen for chromosomal genes of Y. enterocolitica that were exclusively expressed during an infection of mice. We cloned this gene by chromosome capture and subsequently determined its nucleotide sequence. Like inv, the gene encoding the invasin protein of Y. enterocolitica, hreP is located in a cluster of flagellum biosynthesis and chemotaxis genes. The genomic organization of this chromosomal region is different in Escherichia coli, Salmonella, and Yersinia pestis than in Y. enterocolitica. Analysis of the distribution of hreP between different Yersinia isolates and the relatively low G+C content of the gene suggests acquisition by horizontal gene transfer. Sequence analysis also revealed that HreP belongs to a family of eukaryotic subtilisin/kexin-like proteases. Together with the calcium-dependent protease PrcA of Anabaena variabilis, HreP forms a new subfamily of bacterial subtilisin/kexin-like proteases which might have originated from a common eukaryotic ancestor. Like other proteases of this family, HreP is expressed with an N-terminal prosequence. Expression of an HreP-His(6) tag fusion protein in E. coli revealed that HreP undergoes autocatalytic processing at a consensus cleavage site of subtilisin/kexin-like proteases, thereby releasing the proprotein.  相似文献   

18.
19.
A class of nuclear genes termed "restorers of fertility" (Rf) acts to suppress the expression of abnormal mitochondrial genes associated with cytoplasmic male sterility (CMS). In petunia, both the nuclear Rf gene and mitochondrial CMS-associated gene have previously been identified. The CMS-associated gene is an aberrant chimera in which portions of several mitochondrially encoded genes are fused to an unknown reading frame. The dominant Rf allele reduces the CMS-associated protein to nearly undetectable levels and alters the RNA population derived from the CMS locus, but its mechanism of action has not been determined. The petuniaRf gene is a member of the pentatricopeptide repeat gene family (PPR), an unusually large gene family in Arabidopsis (approximately 450 genes) compared with yeast (five genes) and mammalian genomes (six genes). The PPR gene family has been implicated in the control of organelle gene expression. To gain insight into the mode of action of PPR genes, we generated transgenic petunia plants expressing a functional tagged version of Rf. Analysis of the restorer protein revealed that it is part of a soluble mitochondrial inner-membrane-associated, RNase-sensitive high-molecular-weight protein complex. The complex is associated with mRNA derived from the CMS locus.  相似文献   

20.

Introduction

Mast cells participate in atherogenesis by releasing cytokines to induce vascular cell protease expression. Tryptase is expressed highly in human atherosclerotic lesions and the inhibition of tryptase activity hampers its capacity to maintain cholesterol inside macrophague foam cells. We aimed to investigate the association between circulating tryptase levels and subclinical atherosclerosis through estimation of carotid intima-media thickness (c-IMT) as surrogate marker for increased cardiovascular risk in obese and non-obese subjects.

Methods

Circulating tryptase levels (ELISA) and metabolic parameters were analyzed in 228 subjects. Atherosclerosis (c-IMT>0.9 mm) was evaluated ultrasonographically.

Results

Significant positive associations were evident between circulating tryptase levels and BMI, fat mass, glycated haemoglobin, fasting insulin, HOMAIR, fasting triglycerides and ultrasensitive PCR (p<0.05 from linear-trend ANOVA). The positive association between tryptase levels and insulin resistance parameters, suggested a glucose homeostasis impairment in individuals with higher tryptase levels. The negative asociation between tryptase levels and HDL-cholesterol supports the proatherogenic role of this protease (p<0.0001). Circulating tryptase levels were strongly associated with c-IMT measurements (p<0.0001 from linear-trend ANOVA), and were higher in subjects with presence of carotid plaque (p<0.0001). Tryptase levels (beta = 0.015, p = 0.001) contributed independently to subclinical atherosclerosis variance after controlling for cardiovascular risk factors (BMI, blood pressure, LDL-cholesterol).

Conclusions

Circulating tryptase level is associated to obesity related parameters and has a close relation with various metabolic risk factors. Moreover, serum tryptase level was independently associated with c-IMT, suggesting its potential use as a surrogate marker for subclinical atherosclerosis in obese subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号