首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

2.
Nabokina SM  Revin VV 《Biofizika》2002,47(5):869-871
The ability of neutrophil cytosol to induce the aggregation of gelatinase granules of human neutrophils was studied. The cytosol was found to induce the Ca(2+)-dependent aggregation of granules. The stimulatory effect of cytosol was considerably reduced in the presence of the monoclonal antibody recognizing annexin I. Annexin I is a mediator of Ca(2+)-dependent aggregation of gelatinase granules and probably participate in granule secretion.  相似文献   

3.
Annexin A7 (synexin, annexin VII), a member of the annexin family of proteins, causes aggregation of membranes in a Ca2+-dependent manner and has been suggested to promote membrane fusion during exocytosis of lung surfactant, catecholamines, and insulin. Although annexin A7 (A7) was one of the first annexin proteins described, limited studies of its physical characteristics or of structural domains affecting any of its proposed functions have been conducted. As postulated for other annexin proteins, the unique NH2-domain possibly determines the functional specificity of A7. Therefore, we evaluated the effects of segmental deletions in the NH2-terminus on several characteristics associated with the COOH-terminus of A7. The COOH-terminus contains the only tryptophan residue, and all potential trypsin sites, and the Ca2+ and phospholipid binding sites. Recombinant rat A7 and its deletion mutants were expressed using constructs based on the cDNA sequence obtained by screening a rat lung cDNA library. Ca2+ increased the tryptophan fluorescence of A7 and caused a small red shift in the emission maximum (lambdamax), which was further increased in presence of phospholipid vesicles (PLV). NH2-terminal deletions of 29, 51, and 109 residues affected the peak width of fluorescence and lambdamax, surface-exposure of tryptophan residue, and caused a smaller Ca2+-dependent red shift in lambdamax of membrane-bound protein in comparison to A7. Limited proteolysis with trypsin showed that Ca2+ increased the proteolysis of all proteins, but the deletions also affected the pattern of proteolysis. The presence of PLV protected against Ca2+-dependent increase in proteolysis of all proteins. The deletion of first 29 residues also caused decreased membrane binding, aggregation, and fusion, when compared with A7. Collectively, these results suggest that specific NH2-terminus domains can alter those properties of A7 that are normally associated with the COOH-terminus. We speculate that interactions between the NH2- and COOH-termini are required for membrane binding, and aggregation and fusion properties of annexin A7.  相似文献   

4.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

5.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

6.
We have earlier shown that an N-terminal truncated annexin I molecule, annexin I(des1-8), is generated in human neutrophils through cleavage by a membrane localized metalloprotease. The truncated protein showed differences in membrane binding among the neutrophil granule populations as compared to full-length annexin I. In this study, we investigated the cleavage capabilities of isolated neutrophil secretory vesicles and plasma membrane, and the binding of full-length annexin I and annexin I(des1-8) to these membrane fractions. Translocations were performed in vitro to secretory vesicles and plasma membrane, respectively, at different Ca(2+) concentrations. We show that the annexin I-cleaving membrane localized metalloprotease is present both in the secretory vesicles and the plasma membrane. The N-terminal truncation of annexin I gives rise to a molecule with a decreased Ca(2+) requirement for binding, both to secretory vesicles and plasma membrane. There was, thus, no difference in binding of either full-length annexin I or annexin I(des1-8) to the secretory vesicles as compared to the plasma membrane.  相似文献   

7.
Villar AV  Alonso A  Goñi FM 《Biochemistry》2000,39(46):14012-14018
Large unilamellar vesicles containing phosphatidylinositol (PI), neutral phospholipids, and cholesterol are induced to fuse by the catalytic activity of phosphatidylinositol-specific phospholipase C (PI-PLC). PI cleavage by PI-PLC is followed by vesicle aggregation, intervesicular lipid mixing, and mixing of vesicular aqueous contents. An average of 2-3 vesicles merge into a large one in the fusion process. Vesicle fusion is accompanied by leakage of vesicular contents. A novel method has been developed to monitor mixing of lipids located in the inner monolayers of the vesicles involved in fusion. Using this method, the mixing of inner monolayer lipids and that of vesicular aqueous contents are seen to occur simultaneously, thus giving rise to the fusion pore. Kinetic studies show, for fusing vesicles, second-order dependence of lipid mixing on diacylglycerol concentration in the bilayer. Varying proportions of PI in the liposomal formulation lead to different physical effects of PI-PLC. Specifically, 30-40 mol % PI lead to vesicle fusion, while with 5-10 mol % PI only hemifusion is detected, i.e., mixing of outer monolayer lipids without mixing of aqueous contents. However, when diacylglycerol is included in the bilayers containing 5 mol % PI, PI-PLC activity leads to complete fusion.  相似文献   

8.
The present experiments were designed to study intervesicular transfer of cholesterol in rat liver microsomal fraction and modulation of the activity of acyl-CoA:cholesterol acyltransferase (ACAT) under conditions that are expected to result in the covalent modification (phosphorylation/dephosphorylation) of the enzyme. Preincubation of rat liver microsomal fraction followed by assay of ACAT showed a time-dependent increase in activity. This rate was temperature-dependent. Preincubation in the presence of cholesterol/phospholipid liposomes resulted in a time-dependent transfer of cholesterol from liposomal to the microsomal vesicles and in an increase in the rate of ACAT change owing to the preincubation. Both these rates were dependent on liposomal cholesterol concentration and on temperature. The presence of cytosol in the preincubation mixture increased the rate of change of ACAT activity in the absence or in the presence of cholesterol/phospholipid liposomes. In the latter case the presence of cytosol also increased the rate of transfer of cholesterol from liposomal to the microsomal vesicles. Activation energies of the rate of this transfer and of the rate of increase of ACAT activity were similar in the presence and in the absence of cytosol. Both in the absence and in the presence of cytosol, the presence of NaF (50 mM) in the preincubation mixture considerably decreased the rate of transfer of cholesterol from liposomal to microsomal vesicles and the rate of increase of ACAT activity. The presence of Mg2+ in the preincubation mixture produced no effect on the rate of transfer of cholesterol from liposomal to the microsomal vesicles, although under most conditions it decreased the rate of increase of ACAT activity caused by the preincubation. These results are discussed in relation to the molecular mechanism involved in this intervesicular transfer of cholesterol and to the modulation of ACAT activity by substrate supply, and also in relation to the hypothesis that ACAT activity can be modulated by a mechanism involving the phosphorylation/dephosphorylation of the enzyme.  相似文献   

9.
Annexin A7 (synexin, annexin VII) is postulated to promote membrane fusion during surfactant secretion in alveolar type II cells and catecholamine secretion in adrenal chromaffin cells. Recently, we demonstrated that the 1-29 residues in the NH(2)-terminus could, possibly by interaction with the COOH-terminus, influence the Ca(2+)-dependent membrane binding, aggregation, and fusion properties of annexin A7 (A7). In this study, we further investigated this 29-residue domain by evaluating several deletion and point mutations for membrane-associated functions of A7. In comparison to A7, the mutants lacking 1-29 residues (A7Delta(1-29)) or 1-21 residues (A7Delta(1-21)), but not those lacking 1-10 residues (A7Delta(1-10)) or 21-29 residues (A7Delta(21-29)), showed diminished membrane binding. Segmental deletion of 10-20 residues (A7Delta(10-20)) also decreased the protein binding to membranes. The Ca(2+)-dependent membrane aggregation of PLV with A7Delta(1-29) was maximally diminished but less so with A7Delta(10-20) or A7Delta(1-21) in comparison to that with A7. However, phospholipid vesicle (PVL) aggregation was unaffected with A7Delta(1-10) or A7Delta(21-29). The Ca(2+)-dependent membrane fusion of PLV was also diminished with A7Delta(10-20) and A7Delta(1-29), but not with A7Delta(1-10). Since the mode of annexin A7 association and function with biological membranes could be different, we also evaluated these proteins for functional changes with isolated lung lamellar bodies. In comparison to A7, the binding to lamellar bodies was diminished for A7Delta(1-29) and A7Delta(1-21) but not for A7Delta(1-10). The Ca(2+)-dependent fusion of isolated lamellar bodies with PLV was also diminished with A7Delta(1-29), but not with A7Delta(10-20) or A7Delta(1-21). Taken together, our studies suggest that the 10-residue domain (Y(11)-A(20)) in the NH(2)-terminus modifies the phospholipid binding and aggregation properties of annexin A7. For binding and fusion of biological membranes, the 10-29-residue domain may be required although the annexin A7 properties are primarily modulated through the Y(11)-A(20) domain.  相似文献   

10.
A number of studies have suggested that the anionic phospholipid (anPL)-binding protein annexin II may play a role in cytomegalovirus (CMV) infection. Since annexin II has been shown to mediate aggregation and fusion of certain membranes, we investigated whether these properties could be exploited by CMV directly. The experiments showed that purified annexin II, but not the homologous protein annexin V (AnV), can mediate the binding of 35S-CMV (strain AD169) to anPL-coated microtiter wells. This association required Ca2+, could be titrated by varying either annexin II (apparent Kd = 4 x 10(-)8 M) or 35S-CMV, was inhibited by unlabeled CMV, and was observed for the heterotetrameric or monomeric form of annexin II. In experiments utilizing the fluorescence dequenching of octadecyl rhodamine incorporated into the CMV envelope, annexin II was furthermore found to enhance the rate of virus-anPL vesicle fusion. The observed fusion was dependent on the concentration of annexin II, Ca2+, and anPL and was mediated principally by the heterotetramer. Interestingly, AnV was observed to inhibit the effects of annexin II on CMV fusion but not binding to anPL, which indicates that annexin II enhances these processes by distinct mechanisms. The results presented here provide the first direct evidence that annexin II has the capacity to bridge CMV to a phospholipid membrane and to enhance virus-membrane fusion. These observations furthermore suggest that AnV may regulate the fusogenic function of annexin II.  相似文献   

11.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

12.
Purification and characterization of annexin proteins from bovine lung   总被引:3,自引:0,他引:3  
Calcium-dependent association with a detergent-extracted particulate fraction was used as the first step in the purification of a group of phospholipid binding proteins. Elution of the detergent-insoluble fraction with excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) resulted in the release of several soluble proteins, termed calcium-activated proteins or CAPs. In the present paper, we describe the simultaneous purification of these CAPs and characterize their interaction with phospholipid, actin, and calmodulin. Partial sequence analysis has identified the majority of the CAPs as members of the annexin family of calcium and phospholipid binding proteins. Two additional CAPs may be novel proteins, one of which appears to be an annexin protein. All CAPs demonstrated Ca2(+)-dependent binding to phosphatidylserine vesicles but did not bind to phosphatidylcholine vesicles. The majority of CAPs exhibited Ca2(+)-dependent binding to F-actin; however, only CAP-III affected the rate of conversion of G-actin to F-actin. The interaction of CAP-III and lipocortin-85 with F-actin resulted in a Ca2(+)-dependent increase in both light scattering and sedimentation of F-actin under comparatively low centrifugal force. In contrast, only lipocortin-85 caused the formation of F-actin bundles. Although all of the CAPs bound to a calmodulin affinity column in a Ca2(+)-dependent manner, attempts to demonstrate binding of CAPs to native calmodulin were unsuccessful. These studies therefore document the similar behavior of the CAPs toward phospholipid and calmodulin but clearly show that F-actin binding or bundling is not a general property of these proteins. The reported purification procedure should allow further comparative studies of these proteins.  相似文献   

13.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

14.
Recent studies have revealed that binding of annexin I to phospholipids induces the formation of a second phospholipid binding site. It is shown that the N terminus on the concave side of membrane-bound annexin I is cleaved much faster by trypsin or cathepsin than the N terminus of the free protein. The reactivity of the unique disulfide bond located near the concave face was similarly increased by membrane binding. These results demonstrate that Ca(2+)-dependent membrane binding induces a conformational change on the concave side of the annexin I molecule and support the notion that this face of the molecule may contribute to the formation of the secondary membrane-binding site.  相似文献   

15.
Annexins comprise a multigene family of Ca2+ and phospholipid- binding proteins. They consist of a conserved C-terminal or core domain that confers Ca2+-dependent phospholipid binding and an N-terminal domain that is variable in sequence and length and responsible for the specific properties of each annexin. Crystal structures of various annexin core domains have revealed a high degree of similarity. From these and other studies it is evident that the core domain harbors the calcium-binding sites that interact with the phospholipid headgroups. However, no structure has been reported of an annexin with a complete N-terminal domain. We have now solved the crystal structure of such a full-length annexin, annexin 1. Annexin 1 is active in membrane aggregation and its refined 1.8 A structure shows an alpha-helical N-terminal domain connected to the core domain by a flexible linker. It is surprising that the two alpha-helices present in the N-terminal domain of 41 residues interact intimately with the core domain, with the amphipathic helix 2-12 of the N-terminal domain replacing helix D of repeat III of the core. In turn, helix D is unwound into a flap now partially covering the N-terminal helix. Implications for membrane aggregation will be discussed and a model of aggregation based on the structure will be presented.  相似文献   

16.
Annexins are soluble proteins that can interact with membranes in a Ca2+-dependent manner. Recent studies have shown that they can also undergo Ca2+-independent membrane interactions that are modulated by pH and phospholipid composition. Here, we investigated the structural changes that occurred during Ca2+-independent interaction of annexin B12 with phospholipid vesicles as a function of pH. Electron paramagnetic resonance analysis of a helical hairpin encompassing the D and E helices in the second repeat of the protein showed that this region refolded and formed a continuous amphipathic alpha helix following Ca2+-independent binding to membranes at mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, but at pH approximately 5.0-5.5, it was peripheral and approximately parallel to the membrane. The peripheral form was reversibly converted into the transmembrane form by lowering the pH and vice versa. Furthermore, analysis of vesicles incubated with annexin B12 using freeze-fracture electron microscopy methods showed classical intramembrane particles at pH 4.0 but none at pH 5.3. Together, these data raise the possibility that the peripheral-bound form of annexin B12 could act as a kinetic intermediate in the formation of the transmembrane form of the protein.  相似文献   

17.
《The Journal of cell biology》1993,123(6):1845-1855
Synapsin I is a synaptic vesicle-specific phosphoprotein composed of a globular and hydrophobic head and of a proline-rich, elongated and basic tail. Synapsin I binds with high affinity to phospholipid and protein components of synaptic vesicles. The head region of the protein has a very high surface activity, strongly interacts with acidic phospholipids and penetrates the hydrophobic core of the vesicle membrane. In the present paper, we have investigated the possible functional effects of the interaction between synapsin I and vesicle phospholipids. Synapsin I enhances both the rate and the extent of Ca(2+)-dependent membrane fusion, although it has no detectable fusogenic activity per se. This effect, which appears to be independent of synapsin I phosphorylation and localized to the head region of the protein, is attributable to aggregation of adjacent vesicles. The facilitation of Ca(2+)-induced liposome fusion is maximal at 50-80% of vesicle saturation and then decreases steeply, whereas vesicle aggregation does not show this biphasic behavior. Association of synapsin I with phospholipid bilayers does not induce membrane destabilization. Rather, 31P-nuclear magnetic resonance spectroscopy demonstrated that synapsin I inhibits the transition of membrane phospholipids from the bilayer (L alpha) to the inverted hexagonal (HII) phase induced either by increases in temperature or by Ca2+. These properties might contribute to the remarkable selectivity of the fusion of synaptic vesicles with the presynaptic plasma membrane during exocytosis.  相似文献   

18.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

19.
Chow A  Gawler D 《FEBS letters》1999,460(1):166-172
Annexin VI is a Ca(2+)-dependent membrane and phospholipid binding protein. It mediates a protein-protein interaction with the Ras p21 regulatory protein p120GAP. In this study we have mapped the binding site of GAP within the annexin VI protein. Using Far Western overlay binding assays and cell lysate competition studies we have mapped the site of interaction to the inter-lobe linker region; amino acids 325-363. Finally, using a GST fusion protein corresponding to this linker region we have demonstrated that cellular loading of the fusion protein into Rat-1 fibroblasts by electroporation blocks the interaction and co-immunoprecipitation of annexin VI and GAP.  相似文献   

20.
Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains three type II and two type III Ca(2+)-binding sites which are thought to regulate the interaction of AIIt with anionic phospholipid, F-actin, and heparin. In the present study we utilized site-directed mutagenesis to create AIIt mutants with inactive type III (TM AIIt), type II (CM AIIt), and both type II and III Ca(2+)-binding sites (TCM AIIt). Surprisingly, we found that in the presence of Ca(2+), the TM, CM, and TCM AIIt bound phospholipid and F-actin with similar affinity to the wild type AIIt (WT AIIt). Furthermore, the TCM mutant, and to a lesser extent the TM and CM AIIt displayed dose-dependent Ca(2+)-independent phospholipid aggregation and binding. While the TM and CM AIIt demonstrated Ca(2+)-dependent binding to F-actin, the binding of the TCM AIIt was Ca(2+)-independent. These results suggest that the type II or type III Ca(2+)-binding sites do not directly participate in anionic phospholipid or F-actin binding. We therefore propose that in the absence of Ca(2+), the type II and type III Ca(2+)-binding sites of AIIt stabilize a conformation of AIIt that is unfavorable for binding phospholipid and F-actin. Ca(2+) binding to these sites, or the inactivation of these Ca(2+)-binding sites by site-directed mutagenesis, results in a conformational change that promotes binding to anionic phospholipid and F-actin. Since the TM, CM, and TCM AIIt require Ca(2+) for binding to heparin, we also propose that novel Ca(2+)-binding sites regulate this binding event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号