首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The effect of pregnancy on postweaning mammary gland involution was investigated in mice. On the third day after forced weaning at Lactation Day 10, the apoptotic index was 56% lower in mammary tissue of mice that were pregnant at the time of weaning than in nonpregnant mice. Conversely, the bromodeoxyuridine-labeling index was increased sevenfold in pregnant mice compared to nonpregnant controls (3.5% vs. 0.5%, respectively). Structure of mammary alveoli was largely maintained in postweaning pregnant mice. The effect of pregnancy on three specific mammary epithelial cell survival pathways was also examined. First, pregnancy blocked the loss of Stat5a phosphorylation during involution. Significantly, loss of Stat5a phosphorylation during involution was not correlated with loss of Stat5a nuclear localization. Second, pregnancy maintained nuclear-localized progesterone receptor during lactation. Third, pregnancy was associated with increased expression of bfl-1 during involution but had little effect on the expression of other bcl-2 family members. The data indicate that pregnancy inhibits mammary cell apoptosis after weaning while permitting proliferation of the mammary epithelium, and they support the hypothesis that Stat5a and progesterone-signaling pathways act in concert to mediate this effect.  相似文献   

4.

Background  

Mammary glands harbor a profound burden of apoptotic cells (ACs) during post-lactational involution, but little is known regarding mechanisms by which ACs are cleared from the mammary gland, or consequences if this process is interrupted. We investigated AC clearance, also termed efferocytosis, during post-lactational remodeling, using mice deficient for MerTK, Axl, and Tyro3, three related receptor tyrosine kinases (RTKs) regulating macrophage-mediated efferocytosis in monocytes. MerTK expression, apoptosis and the accumulation of apoptotic debris were examined in histological sections of MerTK-deficient, Axl/Tyro3-deficient, and wild-type mammary glands harvested at specific time points during lactation and synchronized involution. The ability of primary mammary epithelial cells (MECs) to engulf ACs was assessed in culture. Transplant of MerTK-deficient mammary epithelium into cleared WT mammary fat pads was used to assess the contribution of WT mammary macrophages to post-lactational efferocytosis.  相似文献   

5.
6.
7.
8.
9.
As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) −/− mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ −/− mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ −/− mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ −/− mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ −/− mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo.  相似文献   

10.
11.
12.
13.
The mammary gland is a developmentally dynamic, hormone-responsive organ that undergoes proliferation and differentiation within the secretory epithelial compartment during pregnancy. The epithelia are maintained by pro-survival signals (e.g., Stat5, Akt1) during lactation, but undergo apoptosis during involution through inactivation of cell survival pathways and upregulation of pro-apoptotic proteins. To assess if the survival signals in the functionally differentiated mammary epithelial cells can override a pro-apoptotic signal, we generated transgenic mice that express Bax under the whey acidic protein (WAP) promoter. WAP-Bax females exhibited a lactation defect and were unable to nourish their offspring. Mammary glands demonstrated: (1) a reduction in epithelial content, (2) hallmark signs of mitochondria-mediated cell death, (3) an increase in apoptotic cells by TUNEL assay, and (4) precocious Stat3 activation. This suggests that upregulation of a single pro-apoptotic factor of the Bcl-2 family is sufficient to initiate apoptosis of functionally differentiated mammary epithelial cells in vivo.  相似文献   

14.
After weaning, during mammary gland involution, milk-producing mammary epithelial cells undergo apoptosis. Effective clearance of these dying cells is essential, as persistent apoptotic cells have a negative impact on gland homeostasis, future lactation and cancer susceptibility. In mice, apoptotic cells are cleared by the neighboring epithelium, yet little is known about how mammary epithelial cells become phagocytic or whether this function is conserved between species. Here we use a rat model of weaning-induced involution and involuting breast tissue from women, to demonstrate apoptotic cells within luminal epithelial cells and epithelial expression of the scavenger mannose receptor, suggesting conservation of phagocytosis by epithelial cells. In the rat, epithelial transforming growth factor-β (TGF-β) signaling is increased during involution, a pathway known to promote phagocytic capability. To test whether TGF-β enhances the phagocytic ability of mammary epithelial cells, non-transformed murine mammary epithelial EpH4 cells were cultured to achieve tight junction impermeability, such as occurs during lactation. TGF-β3 treatment promoted loss of tight junction impermeability, reorganization and cleavage of the adherens junction protein E-cadherin (E-cad), and phagocytosis. Phagocytosis correlated with junction disruption, suggesting junction reorganization is necessary for phagocytosis by epithelial cells. Supporting this hypothesis, epithelial cell E-cad reorganization and cleavage were observed in rat and human involuting mammary glands. Further, in the rat, E-cad cleavage correlated with increased γ-secretase activity and β-catenin nuclear localization. In vitro, pharmacologic inhibitors of γ-secretase or β-catenin reduced the effect of TGF-β3 on phagocytosis to near baseline levels. However, β-catenin signaling through LiCl treatment did not enhance phagocytic capacity, suggesting a model in which both reorganization of cell junctions and β-catenin signaling contribute to phagocytosis downstream of TGF-β3. Our data provide insight into how mammary epithelial cells contribute to apoptotic cell clearance, and in light of the negative consequences of impaired apoptotic cell clearance during involution, may shed light on involution-associated breast pathologies.Effective clearance of apoptotic cells is important in maintaining tissue homeostasis. Weaning-induced mammary gland involution is a unique model for studying apoptotic cell clearance, as 80–90% of the milk-producing mammary epithelium undergoes apoptosis to return the gland to a non-secretory state.1 Professional phagocytes, such as macrophages, are recruited into the involuting mammary gland; however, they are thought to have a limited role in the clearance of dying secretory cells, as in mice, peak macrophage infiltration occurs after the majority of apoptotic cell removal.2 Rather, the neighboring mammary epithelial cells themselves appear to be the primary cell type responsible for apoptotic cell clearance during involution.2 Rapid and efficient apoptotic cell clearance is essential, as persistence of apoptotic cells can result in the release of cell fragments into the local environment and subsequent autoimmunity.3 Importantly, impaired apoptotic cell clearance in the postpartum mammary gland results in local inflammation, fibrosis and epithelial cell hyperplasia.4, 5Although there is increasing evidence that phagocytosis by mammary epithelial cells has a crucial role in maintaining tissue homeostasis in the involuting murine mammary gland, little is known about how mammary epithelial cells become phagocytic during postpartum involution. One of the key changes in the mammary epithelium that may contribute to acquisition of a phagocytic phenotype is reorganization of epithelial cell junctions. During lactation, tight junctions between mammary epithelial cells become highly impermeable, which assures localization of milk within the mammary ducts.6 With weaning, this impermeability is lost,6 consistent with tight junction reorganization. Furthermore, reorganization of adherens junctions is also observed upon the switch from lactation to involution.7 Given that professional phagocytes such as macrophages do not exist in monolayers with cell cell junctions, disruption of epithelial cell junctions at the onset of mammary gland involution may be required for mammary epithelial cells to become phagocytic.One candidate cytokine for promoting epithelial cell junction reorganization and phagocytosis is transforming growth factor-β (TGF-β). Binding of TGF-β to the TGF-β type II receptor (TβRII) activates canonical signaling through a signaling cascade involving the TGF-β type I receptor, receptor-associated Smads (Smad2/3) and Smad4. TGF-β protein and mRNA levels are significantly increased in the mammary gland on the switch from lactation to involution, with increased expression persisting through at least 9 days post weaning.8, 9 Of the three TGF-β isoforms (TGF-β1, -β2 and -β3), TGF-β3 increases the greatest upon the lactation-to-involution switch.8, 9, 10, 11 Overexpressing TGF-β3 or depleting Smad3 or TβRII in the mammary epithelium reveals a necessary role for TGF-β in promoting apoptosis early during involution.10, 12, 13, 14 However, sustained TGF-β expression throughout the postpartum involution window suggests additional roles for TGF-β that extend beyond apoptosis induction, including influencing extracellular matrix remodeling and immune cell composition.8, 10, 12, 13, 14, 15 TGF-β is known to increase the phagocytic capacity of retinal pigment epithelial cells, fibroblasts and macrophages,16, 17, 18 although a role for TGF-β in mediating apoptotic cell clearance by phagocytic mammary epithelial cells has not been explored. Furthermore, TGF-β is implicated in tight junction disruption in the mammary gland and has known roles in adherens junction disassembly, making it an intriguing target to investigate in the promotion of a phagocytic phenotype in mammary epithelial cells.6, 19Currently, it is unknown whether the mammary epithelium has a role in apoptotic cell clearance in species other than mice. Therefore, we evaluated rat and human involution mammary tissue for apoptotic cell clearance by the mammary epithelium. Further, as addressing the role of TGF-β in promoting phagocytosis by mammary epithelial cells during gland involution is challenging due to impaired cell death in the absence of TGF-β signaling,12, 13, 14 we developed an in vitro model to investigate the role of TGF-β3 in mammary epithelial cell junction reorganization and phagocytosis.We demonstrate engulfment of apoptotic cells by mammary epithelial cells during weaning-induced involution in both rats and women, supportive of phagocytosis being a conserved feature of mammary epithelium during postpartum involution. Using our murine mammary epithelial culture model that mimics the high junctional resistance of the lactating gland, we show that TGF-β3 promotes phagocytic capability and identify a potential role for cell–cell junction disruption in epithelial cell phagocytosis. Furthermore, we identify a previously unreported role for the intramembrane protease γ-secretase in the promotion of phagocytosis by TGF-β3. In light of the negative consequences of impaired apoptotic cell clearance during postpartum involution,4, 5 our data provide insight into how mammary epithelial cells may contribute to apoptotic cell clearance during this time.  相似文献   

15.
The extracellular serine protease, plasmin, is activated from its precursor, plasminogen (Plg), by the urokinase-type and tissue-type Plg activators (uPA and tPA respectively). One of the main plasmin substrates, fibrin, is formed from fibrinogen via thrombin activity. We have previously shown that mice deficient for Plg are strikingly less able to support a litter during lactation compared to wild type mice. Here we suggest a mechanism responsible for this lactation defect. Reduced epithelial content and increased apoptosis are observed in Plg-deficient mammary glands at lactation day 7. Immunofluorescence analysis reveals the presence of fibrin(ogen) in the stroma surrounding mammary alveoli and adipocytes and identifies fibrin(ogen) as a component of breast milk in both wild type and Plg-deficient mice. Furthermore, a large accumulation of fibrin(ogen) together with apoptotic epithelial cells is observed in the lactating mammary alveoli and ducts of some Plg-deficient mice. This suggests that fibrin plays a key role in the malfunction of mammary glands in the absence of Plg, possibly through blockade of mammary ducts inducing milk stasis, inhibiting milk expulsion and thereby inducing premature apoptosis and involution.  相似文献   

16.
This study demonstrated, for the first time, the following events related to p19(ARF) involvement in mammary gland development: 1) Progesterone appears to regulate p19(ARF) in normal mammary gland during pregnancy. 2) p19(ARF) expression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19(ARF) protein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19(ARF) in mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21(Cip1) and decrease in apoptosis, and 2) p19(ARF) null cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21(Cip1) compared with WT cells. Although, p19(ARF) is dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19(ARF) null mice, the upregulation of p19(ARF) by progesterone in the WT cells and the weakness of p21(Cip1) in mammary epithelial cells lacking p19(ARF) strongly suggest that the functional role(s) of p19(ARF) in mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.  相似文献   

17.
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R(+) macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R(+) macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.  相似文献   

18.
《Tissue & cell》2016,48(6):577-587
RNA binding proteins (RBPs) regulate gene expression by controlling mRNA export, translation, and stability. When altered, some RBPs allow cancer cells to grow, survive, and metastasize. Cold-inducible RNA binding protein (CIRP) is overexpressed in a subset of breast cancers, induces proliferation in breast cancer cell lines, and inhibits apoptosis. Although studies have begun to examine the role of CIRP in breast and other cancers, its role in normal breast development has not been assessed. We generated a transgenic mouse model overexpressing human CIRP in the mammary epithelium to ask if it plays a role in mammary gland development. Effects of CIRP overexpression on mammary gland morphology, cell proliferation, and apoptosis were studied from puberty through pregnancy, lactation and weaning. There were no gross effects on mammary gland morphology as shown by whole mounts. Immunohistochemistry for the proliferation marker Ki67 showed decreased proliferation during the lactational switch (the transition from pregnancy to lactation) in mammary glands from CIRP transgenic mice. Two markers of apoptosis showed that the transgene did not affect apoptosis during mammary gland involution. These results suggest a potential in vivo function in suppressing proliferation during a specific developmental transition.  相似文献   

19.
《Genomics》2022,114(5):110442
Regenerative involution is important for the subsequent lactation, but molecular mechanism has not been revealed. The crucial miRNA in tissue development indicates that miRNAs might participate in regenerative involution. In the present study, the mammary tissues of the dairy goats (n = 3) were collected via biopsy at wk-8 (time to dry off), –6, –4, –1, and + 1 relative to lambing for the Hematoxylin and Eosin staining and miRNA sequencing. Alveolar structures collapsed during regenerative involution, but the structures remained intact and distended. Among the 50 miRNA expression trajectories categorized by short time-series expression miner, two significant patterns were clustered. The differentially expressed miRNAs in the two patterns were mainly related to the self-renewal of tissue and enriched in pathways containing vesical-mediated transport, tissue development, tube development, vasculature development and epithelial development. The identification of the miRNAs will help in elucidating their regulatory roles in mammary gland development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号