首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The conservation of scarce land resources is essential to the long-term viability of agriculture in Rwanda. High population density, steep slopes, and abundant rainfall prevail in the highland portions of this African country, making the task of erosion control uncommonly difficult for the peasant farmer. The specific use to which land is put, e.g., cultivation, fallow, pasture, woodlots, and, if it is cultivated, the particular combination of crops grown, can be seen as contributing to both the cause and the solution of the land degradation problem. Based on data from a nationwide survey of over 4800 agricultural fields in Rwanda, this study reviews the extent to which the land use and cropping patterns employed by farmers are appropriately suited, in terms of erosion control, to the topographical and environmental characteristics of their landholdings. Analyses of other aspects of the traditional agricultural system, e.g., variations in relative soil fertility, the use of organic fertilizers, and the location of fields relative to the household, are introduced to help explain why farmers often fail to maximize erosion control through land use and cropping practices. Adjustments to current land use practices that can be expected to reduce soil loss are discussed.  相似文献   

2.
Misiones rainforest is one of the most threatened subtropical forests worldwide. Anthropogenic pressure by agriculture and forestry expansion continues transforming landscapes with negative consequences on ecosystem service provision, such as soil erosion control. Understanding how land use and land cover change (LUCC) management, policies, and social factors influenced in the past, allows decision-makers to anticipate potential effects on future land use and soil loss, contributing to the sustainable planning and management of productive activities. We developed three spatially explicit scenarios for Misiones province by 2030 using the Dinamica EGO modeling platform: 1) Business as Usual (BAU), 2) Low Deforestation (ALTlow), and 3) High Deforestation (ALThigh), based on different international and domestic socioeconomic contexts. We used land cover data from 2002 to 2015 as well as biophysical, social-infrastructure, political-administrative factors, and legal restrictions to estimate changes that may occur by 2030. We analyzed magnitude, intensity, and spatial pattern of future forest cover changes through transition rates and a cellular automata allocation model. Moreover, we used the Universal Soil Loss Equation (USLE) integrated into a Geographic Information System (GIS) to determine soil water erosion and soil loss tolerance in each scenario. Our results revealed that around 19% of the remaining native forest would be transformed into either agriculture or cultivated forest by 2030 for all scenarios. In addition, and contrary to that trend, the ALTlow scenario showed a recovery of 3% of native forest. Regarding soil erosion, our study indicated that the mean annual soil loss by 2030 would range from 12.03 to 19.15 t. ha−1.year−1 for ALTlow and ALThigh scenarios, respectively. Additionally, between 21% and 31% of Misiones province showed soil loss values higher than tolerance. Our work shows that a 10% decrease in the deforestation rate, compared to the current rate, would lead not only to a recovery of native forest cover, but also to a reduction in soil loss of about 4.5 Mt.yr−1 by 2030. This study demonstrates the suitability of the applied model to simulate future LUCC processes and provides inputs for decision-making involving natural resource management and the potential impacts of these decisions on ecosystem services. Finally, our results highlight the need for appropriate policies and regulations, especially, in terms of land use change restrictions in areas of high erosion risk.  相似文献   

3.
1995~2000年中国沙地空间格局变化的遥感研究   总被引:20,自引:2,他引:18  
利用遥感方法 ,在覆盖全国的 Landsat-TM数据的基础上 ,对 1 995年和 2 0 0 0年中国沙地的空间分布格局与动态变化进行了调查。结果显示了 2 0 0 0年中国沙地总面积为 5 9× 1 0 4 km2 ,主要分布于各主要沙漠和我国的 7个主要省份。1 995~ 2 0 0 0年 ,有 470 9.7km2的土地转化为沙地 ,同时又有 2 1 5 6.4km2的沙地转化为其它土地利用类型 ,沙地总面积扩大了2 5 5 3 .3 km2 。对变化为沙地的土地进行分析 ,发现草地占主要部分 ,但耕地所占的比重也非常突出 ,同时也表明有部分沙地变化为草地和耕地。根据土地沙化的空间分布特征 ,将土地沙化过程分为 5种格局 :沙地 -绿洲型、沙漠型、沙地 -黄土过渡型、沙地 -草地型和高原风蚀型。通过对中国发生土地风蚀沙化的主要省份在 1 995~ 2 0 0 0年间的土地利用动态变化发现 ,土地利用变化是促使土地发生沙化的一个重要因素。在 5 a的时间里 ,7个省份耕地总面积扩大了 90 3 9.7km2 ,草地减少了 1 1 5 97.9km2。耕地的增加部分几乎均表现为对草地的侵占 ,土地变为沙地也主要发生在草地区。人为因素导致的耕地面积扩大是促使土地沙化的重要原因。对主要省份的土地利用方式进行分析 ,探讨不同地区减轻土地沙化趋势下的土地利用布局。  相似文献   

4.
汉江流域景观格局变化对土壤侵蚀的影响   总被引:1,自引:0,他引:1  
高艳丽  李红波 《生态学报》2021,41(6):2248-2260
在流域尺度上,景观格局变化是决定土壤侵蚀程度的重要因素。以汉江流域为研究区域,基于2000—2015年四期土地利用类型数据及环境气象数据,运用中国土壤流失方程和逐步回归法,探究景观格局变化对土壤侵蚀的影响。结果表明:(1)在2000—2015年间,汉江流域土壤侵蚀量下降,高值区分布在流域中部草地区,低值区分布在流域东西两侧的林地和耕地区。不同坡度下各等级土壤侵蚀量不同,侵蚀量最大值出现在10—30°的坡度范围内。(2)研究期间,汉江流域的景观破碎化程度加强,斑块形状趋于简单,各斑块自身连通性增强,景观类型空间分布均匀。(3)汉江流域土壤侵蚀量与斑块密度和平均邻接度指数呈正相关,与蔓延度指数和香农均匀度指数呈负相关,即景观破碎度越高、连通性越差,土壤越容易遭受侵蚀,反之则不易受到侵蚀;研究表明景观格局变化对土壤侵蚀有显著影响,结果可为流域尺度景观管理与水土保持研究提供参考。  相似文献   

5.
The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha?1 yr?1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha?1 yr?1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of ?2.28 and +0.79 Tg yr?1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.  相似文献   

6.
研究土壤侵蚀与景观格局变化的关系对小流域的治理开发具有重要的指导意义。本研究以实施退耕还林草、生态农业、生态旅游及科技示范的黄土高原安塞南沟特色治理小流域为研究对象,基于GIS平台和通用土壤流失方程,分析小流域1981—2018年景观格局和土壤侵蚀量的时空演化特征,并利用主成分回归法,从斑块类型水平和景观水平两个尺度分析土壤侵蚀模数与3类9个景观格局指标的关系。结果表明: 研究期间,在5种景观类型中,耕地和林地面积的时空变化主导了南沟小流域景观格局的演化,并且影响整个小流域的聚集分散程度;南沟小流域的土壤侵蚀量逐年减少,1981—2018年土壤侵蚀面积减少29.7%,侵蚀模数减少61.2%,且有73.4%的区域土壤侵蚀强度减轻;耕地和林地面积的变化决定了整个小流域土壤侵蚀模数的变化,其景观格局指数的变化方向与该景观类型土壤侵蚀的变化方向一致;退耕还林草工程是流域景观格局变化、土壤侵蚀减轻的主要原因,特色开发治理可以减弱局部地区土壤侵蚀强度。景观类型的合理化配置能有效地防治小流域土壤侵蚀,将其与特色治理开发相结合有助于实现小流域可持续高质量发展。  相似文献   

7.
皇甫川流域土地利用变化与土壤侵蚀评价   总被引:13,自引:0,他引:13  
喻锋  李晓兵  陈云浩  王宏  杨明川 《生态学报》2006,26(6):1947-1956
基于“3S”技术,揭示了皇甫川流域近十多年来的土地利用变化情况,并采用通用土壤侵蚀方程(Universal Soil Loss Equation,USLE)定量研究了不同土地利用背景下的土壤侵蚀分布规律。结果表明,近十几年来流域土地利用变化剧烈,其总体趋势是城镇用地、林地、耕地和灌丛的面积逐渐增加(速率依次减小),水体、草地、沙地和棵砒砂岩面积逐渐减小(其中水体缩减的幅度最大),土地利用格局持续承受着来自当地快速城市化进程及社会经济发展和生态环境保护及建设两方面相互矛盾的巨大压力;与此同时,流域土壤侵蚀模数由1987年的16160.72t/km^2减少到2000年的13943.32t/km^2,其中6种不同土地利用类型在同一年份内土壤侵蚀模数的大小顺序为棵砒砂岩〉沙地〉耕地〉草地〉林地〉灌丛,表明林、灌措施是流域植被恢复和减少土壤侵蚀的首选,草地限制土壤侵蚀的效果也较为明显,而沙地尤其是分布面积较广的棵砒砂岩则是土壤侵蚀综合治理的难题和关键;虽然十几年来水土流式综合治理效果显著,但由于棵砒砂岩和沙地的面积仍在整个流域占有相当的比例以及耕地剧增等因素,土壤侵蚀模数仍明显高于流域土壤允许侵蚀的临界值,流域生态环境仍然处于不安全状态,有必要对未来土地利用格局进行优化以确保生态安全。最后,在讨论中阐明了流域土地利用格局调整和优化的方向。  相似文献   

8.
景观格局-土壤侵蚀研究中景观指数的意义解释及局限性   总被引:14,自引:0,他引:14  
刘宇  吕一河  傅伯杰 《生态学报》2011,31(1):267-275
景观格局分析是景观生态学研究的重要组成部分。景观指数是景观格局分析的有力工具。近年来,景观格局与土壤侵蚀关系的相关研究增多,常规景观格局指数得到应用。但针对土壤侵蚀过程的景观指数意义解释不足,景观指数在刻画景观格局-土壤侵蚀过程关系存在局限。选择了连接性、多样性、边界/斑块密度、形状4个方面的12个常用景观指数,对这些指数在景观格局-土壤侵蚀过程关系研究中的意义进行阐述,对指数应用的局限性及其原因进行了分析。景观数据属性、景观指数本身性质和土壤侵蚀过程的复杂性使得常规景观格局指数在景观格局-土壤侵蚀关系研究中存在不足。这3方面的影响使得常规景观格局指数与土壤侵蚀表征变量之间不存在确定的关系,从而难以通过景观指数来表征景观土壤侵蚀特征。缺乏土壤侵蚀过程基础是常规景观指数在土壤侵蚀研究应用中存在局限的主要原因。因此,构建基于土壤侵蚀过程的景观指数是景观格局-土壤侵蚀关系研究的需要和新的发展方向。  相似文献   

9.
Herbicide applications have greatly reduced plant cover, and increased soil erosion on a new orange orchard planted on valley slopes in eastern Spain. This has increased the importance of soil fauna, such as ants, in regulating soil erosion processes. Ants increase water infiltration rates by forming soil macropores during nest construction, but new soil brought to the surface by ant activity could increase the sediments available for erosion. Simulated rainfall experiments were conducted on 20 paired plots (20 with ant activity and 20 controls) to study the impact of ants on surface water flow and sediment movement in an intensively managed orange orchard near Valencia, Spain. Simulated rainfall was applied to each plot at a rate of 55 mm/h on a 0.25 m2 area for 1 h. We found a reduction of soil bulk density, an increase in soil organic matter, and an increase in macropore flow in ant‐affected soils, as compared to soil without ant activity. These ant‐induced soil changes increased water infiltration rates and runoff discharge. However, the fresh, unconsolidated soil brought to the surface during nest construction resulted in greater soil loss on two plots than their ant‐free controls. Ants can be an important factor in soil erosion processes when surface vegetation is removed by intensive herbicide use.  相似文献   

10.
防护林带体系是东北漫岗黑土区坡耕地的重要组成部分,对坡耕地上侵蚀沟的发生、发展具有重要影响.本文以黑龙江省鹤山农场典型小流域为研究对象,基于Quickbird高精度遥感影像和数字高程模型,结合实地调查结果,分析防护林带分布对坡耕地侵蚀沟发生、发展的影响,并根据坡耕地沟蚀特点及其与防护林带分布的相关关系,提出防护林带分布的优化方案.结果表明:当前不合理的防护林带布局,直接或间接地促进了坡耕地浅沟和切沟的发生和发展.优化方案包括:调整防护林带走向为横坡林带,加强林带维护和更新,以减少林带间断,增加林带条数,减小林带间距等,同时提出了坡面林带条数和林带间距的计算方法.研究结果可为典型漫岗黑土区坡耕地的沟蚀防治和防护林带规划提供科学依据.  相似文献   

11.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

12.
Sediment discharge into Lake Malawi is threatening its ecologicalimportance, thereby inflicting serious socio-economic consequences upon peopledependent on this ecosystem. The discharge is attributed to high rates oferosion in the Lake's catchment, principally occurring on agriculturalland. This study examines how survival strategies, such as expansion ofcultivated farmland and use of low fertilizer application rates, enhance thelikelihood of erosion in the Linthipe River Catchment – one of theLake's important river catchments. As such, it shows that the magnitude oferosion is significantly correlated to the amount of farmland cultivated byestate farmers and smallholders (r = 0.18,P = 0.03, and r = 0.19,P = 0.003 respectively). The low correlation coefficientsuphold the long-established fact that physical variables such as soilerodibility (vulnerability of soil to erosion), rainfall erosivity (thepotential of rainfall to cause erosion), and topography, also play major rolesin erosion processes. Nonetheless they do show that area of cultivated landcontributes to erosion. Additionally, the study shows that yields of importantcrops such as maize and tobacco are low because of insufficient use offertilizers. To compensate for the low yields, farmers rely on extending sizesof land that they cultivate thereby exposing more land to erosive forces ofrainfall. The study, therefore, concludes that Lake Malawi's biodiversityis under threat. In order to sustain the biodiversity, it is necessary toeliminate the need to increase farmland by means of agricultural intensificationthat incorporates appropriate soil-conservation measures.  相似文献   

13.
High Andean paramo and cloud forest ecosystems in South America are undergoing transition to agricultural activities such as potato farming and cattle grazing in many areas. There is a lack of data quantifying the contributions of these land uses to soil erosion and nutrients loss. Thus, we assessed soil quality in patches of potato crops and pasture for cattle grazing, and tested soil and nutrient loss from these two land uses in response to heavy rainfall simulation rates (100 mm h−1). Physico-chemical analyses were also carried out in soil and runoff water samples. We found that potato farming had more severe impacts on soil quality, with substantial loss of the silt fraction (low silt levels of 11.9% were found in soil composition) that prevents aggregates formation and increase soil instability. Furthermore, we found that potato farming resulted in much higher soil loss rate (5.67 g h−1) compared to that of pastoral land use (0.61 g h−1). Meanwhile, N and P average losses measured in runoff were 1.22 mg N-NO3 l−1 plus 0.12 mg P-PO3 l−1 for the potato crop, and 0.86 mg N-NO3 l−1 plus 0.09 mg P-PO3 l−1 for the pastures, respectively. We postulate that more effective and continuous rooting prevents soil disaggregation in pasture relative to cropping, and that continuous and extensive foliage protects the soil from rain-splash erosion. Finally, direct relationships appeared between the two agricultural practices evaluated and the loss of soil and nutrients. Thus, if anthropogenic practices such as those studied herein continue their widespread trend observed in recent years in the region, then two of the most important paramo eco-systemic services, that is, water regulation and high water quality supply, may be impaired with all the consequences this brings for human settlements and their livelihoods located down waters.  相似文献   

14.
Soil erosion by water is considered as one of the most significant forms of land degradation that affects sustained productivity of agricultural land use and water quality. It is influenced by a considerable number of factors (including climate, soil, topography, land use and types of land management), so that the information on the spatial distribution of soil erosion rate and its related effects can be effectively employed as a baseline data for land use development and water protection. The principal aim of this study is three-fold: (i) to map existing land use; (ii) to assess and map the spatial distribution of average annual rate of soil losses in the study area; (iii) to evaluate spatial matching between existing and proposed land use including a distance analysis from the water body (the Bili-Bili Dam). An analytical procedures used, respectively, include supervised classification of satellite imagery, application of RUSLE (Revised USLE), and overlay analysis in a raster GIS environment, utilising available information in the region covering some parts of Jeneberang catchment, South Sulawesi, Indonesia. The results suggest that the outputs of this study can be used for the identification of land units on a cell-basis with different land use types, rate of soil loss, inconsistency between proposed and planned land use, as well as the threat of land degradation to the main river and the dam. The analytical procedures developed in this research may be useful in other areas, particularly in the studies related to the assessment and mapping of land use and erosion for the importance of sustainable land use at a relatively large area.  相似文献   

15.
Agriculturally driven changes in soil phosphorus (P) are known to have persistent effects on local ecosystem structure and function, but regional patterns of soil P recovery following cessation of agriculture are less well understood. We synthesized data from 94 published studies to assess evidence of these land‐use legacies throughout the world by comparing soil labile and total P content in abandoned agricultural areas to that of reference ecosystems or sites remaining in agriculture. Our meta‐analysis shows that soil P content was typically elevated after abandonment compared to reference levels, but reduced compared to soils that remained under agriculture. There were more pronounced differences in the legacies of past agriculture on soil P across regions than between the types of land use practiced prior to abandonment (cropland, pasture, or forage grassland). However, consistent patterns of soil P enrichment or depletion according to soil order and types of post‐agricultural vegetation suggest that these factors may mediate agricultural legacies on soil P. We also used mixed effects models to examine the role of multiple variables on soil P recovery following agriculture. Time since cessation of agriculture was highly influential on soil P legacies, with clear reductions in the degree of labile and total P enrichment relative to reference ecosystems over time. Soil characteristics (clay content and pH) were strongly related to changes in labile P compared to reference sites, but these were relatively unimportant for total P. The duration of past agricultural use and climate were weakly related to changes in total P only. Our finding of reductions in the degree of soil P alteration over time relative to reference conditions reveals the potential to mitigate these land‐use legacies in some soils. Better ability to predict dynamics of soil nutrient recovery after termination of agricultural use is essential to ecosystem management following land‐use change.  相似文献   

16.
新疆库尔勒市土地利用变化对土壤性状的影响研究   总被引:32,自引:0,他引:32  
陈浮  濮励杰  彭补拙  包浩生 《生态学报》2001,21(8):1290-1295
土地利用与土地覆被变化是全球变化研究的热点问题。在新疆库尔勒市选择土地利用变化后已持续利用15-20a的9种典型利用方式,11个剖面,与荒漠、原始胡杨林2各参照利用方式3个标准剖面进行对比分析。结果显示土地利用变化对土壤养分、土壤盐分、土壤侵蚀、土壤水分和土地生产力有明显的影响,荒漠开垦后土壤养分呈下降趋势,土壤侵蚀强度也呈下降趋势,土地生产力与土壤有水分含量呈上升趋势。同时发现土壤侵蚀强度与生产力呈负相关关系,土地生产力与土壤水分呈正相关关系。林、草有利于保护干旱区生态环境,调整土地利用结构,合理开垦,加之预防和治理措施在一定程度上可防止或减弱土地退化(荒漠化)进程。  相似文献   

17.
土壤风蚀影响因子与防治技术   总被引:13,自引:4,他引:9  
马月存  陈源泉  隋鹏  尹春梅 《生态学杂志》2006,25(11):1390-1394
土壤风蚀是当今制约世界各国农业可持续发展和环境质量的主要因素。本文从土壤质地、风速、土壤湿度和植被覆盖等方面介绍了影响土壤风蚀的主要因素,并详细阐述了各个因素与风蚀量之间的数量关系;同时总结出了当前国际上流行的几种能够有效防治风蚀的方法,并且通过比较各种防治方法的优缺点。提出目前解决中国土壤风蚀最可行的途径是保护性耕作为主,其他技术为辅;最后,借鉴西方新制度经济学的观点,分析了目前土壤风蚀防治进展缓慢的原因,并提出了相关的政策性建议。  相似文献   

18.
The impact of land-cover types on soil erosion and runoff, as well as on physico-chemical soil properties, was monitored. The study area, an agroforestry landscape was located in Sierra Nevada Mountains in south-eastern Spain. Eight land-cover types were investigated: farmland planted with olive, almond, and cereals; forest with P. halepensis and P. sylvestris; shrubland; grassland; and abandoned farmland. The erosion plots replicated twice were located on hillslopes, where erosion and runoff were measured after 22 storm events. Forest dominated by Pinus stands exhibited significantly the lowest amounts of erosion and runoff, contrasting with abandoned farmland. Olive had higher erosion than did almond, cereals, or grasslands, but with the highest runoff rate under almond groves. The erosion and runoff response to shrubland showed an intermediate situation between forest and farmland–grassland uses. Under forest and shrubland, better soil properties were determined, especially higher organic C and total N, and lower soil-bulk density. Erosion was highly dependent on runoff, bulk density, soil organic C, and the degree of soil surface covered. Thus, the alteration in land cover is essential to an understanding of productivity of soil undergoing erosion, as sustainable planning can mitigate soil-degradation processes in the overall agroforestry landscape.  相似文献   

19.
This study examined the processes underlying land and riparian degradation, by quantifying soil erosion and gully growth in slopes adjacent to cropland. The concentration of suspended sediments was consistently higher in cultivated catchments, where gully expansion causes 2–3 times more landslides than occur in forested catchments. Sediment from gullies contributed about 34% of the total sediment in the cultivated catchment. There has been increasing erosion and sedimentation on the valley floor over the past 20 years, both because of the expansion of land under cultivation and because of the mechanization of agriculture since the 1960s has reduced the infiltration capacity of cropland, making it easier for erosion to occur when it rains. Most of the finer sediment is transported to the sea, where it affects coastal ecosystems, while the coarser sediment, such as sand, remains in the stream and fills the spaces between gravel on the streambed. This eliminates habitat suitable for fish and invertebrates; the density of macro-invertebrates in cultivated catchments is only 10–20% of that in forested catchments. Effective stream restoration will require both construction measures to prevent slopes from eroding and the regulation of land use, including reforestation at the borders of agricultural land.  相似文献   

20.
武汉市位于桐柏山大别山国家级水土流失预防区与幕阜山省级水土流失治理区之间,其土壤侵蚀问题对长江中游生态安全具有重要影响。基于2009-2018年武汉市蔡店、磨盘山、西湖流域、燕子山等4个水土保持监测站35个径流小区的观测数据(139组),定量分析了坡度、侵蚀性降水量、土地利用和水土保持措施对土壤侵蚀的影响,并借鉴USLE模型识别土壤侵蚀主导因子。结果表明,裸地小区的平均土壤侵蚀模数最高(2597.57 t km-2 a-1),其次是经济林、草地和耕地小区且三者的侵蚀模数相差不大,土壤侵蚀模数与侵蚀性降雨量、坡度之间呈显著二元线性或幂函数关系;与天然植被小区相比,植物篱(草带、茶树、紫穗槐)及石坎梯田措施均显著降低了土壤侵蚀模数,其中植物篱措施的效果更优,且草带植物篱小区的侵蚀模数最低(46.13 t km-2 a-1);3个坡度等级(0-10°、10-20°、20-25°)小区平均侵蚀模数分别为892.07、911.15、2087.60 t km-2 a-1,表明坡度超过20°后土壤侵蚀严重加剧;武汉市土壤侵蚀的主导因子为水土保持措施、植被覆盖与管理因子。研究结果可为武汉市水土保持措施合理布设及侵蚀预报模型的完善提供依据,基于径流小区长期观测数据的土壤侵蚀定量研究值得进一步深入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号