首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanism of DNA injury by mild heat was investigated using matched isogenic mutants of E. coli. On heating at 52 degrees C for 1 h, the number of DNA single-strand breaks (SSBs) detected by the alkaline sucrose gradient sedimentation technique was consistently smaller in mutants NH5016 and BW2001, both deficient in the AP (apurinic/apyrimidinic) endonuclease of exonuclease III, as compared with their wild-type parent AB1157. The greater number of SSBs in the wild type was accompanied by more extensive cell death as compared with the AP-deficient mutants. Heating of endonuclease-free DNA systems, viz., T4 phage and T4 DNA, at 52 degrees C for up to 4 h did not result in any detectable SSB. Apparently, cellular injury by mild heat is self-inflicted through an AP-endonuclease-mediated process and hence depends on the cell's genetic complement of AP endonuclease. Mild heat is believed to activate the nucleolytic attack, and the resultant DNA-strand breaks, if not repaired, will eventually lead to cell death.  相似文献   

2.
A methyl methane sulfonate (MMS)-sensitive mutant of Escherichia coli AB 1157 was obtained by N-methyl-N'-nitro-N-nitrosoguanidine treatment. The mutant strain, AB 3027, is defective both in endonuclease activity for apurinic sites in deoxyribonucleic acid (DNA) and in DNA polymerase I, as shown by direct enzyme assays. Derivative strains, which retained the deficiency in endonuclease activity for apurinic sties (approximately 10% of the wild-type enzyme level) but had normal DNA polymerase I activity, were obtained by P1-mediated transduction (strain NH5016) or by selection of revertants to decreased MMS sensitivity. These endonuclease-deficient strains are more MMS-sensitive than wild-type strains. Revertants of these deficients strains to normal MMS resistance were isolated. They had increased levels of the endonuclease activity but did not attain wild-type levels. The data suggest that endonuclease for apurinic sites is active in repair of lesions introduced in DNA as a consequence of MMS treatment. Two different endonucleases that specifically attack DNA containing apurinic sites arepresented in E coli K-12. A heat-labile activity, sensitive to inhibition by ethylenediaminetetraacetate, accounts for 90% of the total endonuclease activity for apurinic sties in crude cell extracts. The residual 10% is due to a more heat-resistant activity, refractory to ethylenediaminetetraacetate inhibition. The AB3027 and NH5016 strains have normal amounts of the latter endonuclease but no or very little of the former activity.  相似文献   

3.
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair.  相似文献   

4.
The genetic requirements for the excision repair of thymine glycols, urea residues, and apurinic (AP) sites were examined by measuring the survival in Escherichia coli mutants of phi X174 replicative form (RF) I transfecting DNA containing selectively introduced lesions. phi X RF I DNA containing thymine glycols was inactivated at a greater rate in mutants deficient in endonuclease III (nth) than in wild-type hosts, suggesting that endonuclease III is involved in the repair of thymine glycols in vivo. phi X RF I DNA containing thymine glycols was also inactivated at a greater rate in mutants that were deficient in both exonuclease III and endonuclease IV (xth nfo) than in wild-type hosts, suggesting that a class II AP endonuclease is required for the in vivo processing of thymine glycols. phi X duplex-transfecting DNA containing urea residues or AP sites was inactivated at a greater rate in xth nfo double mutants than in wild-type, but not single-mutant, hosts, suggesting that exonuclease III or endonuclease IV is required for the repair of these damages and that either activity can substitute for the other. These data are in agreement with the known in vitro substrate specificities of endonuclease III, exonuclease III, and endonuclease IV.  相似文献   

5.
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3' DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3'-5' exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3' recessed ends were preferred substrates for the 3'-5' exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.  相似文献   

6.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

7.
Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-α,β unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the α,β unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.  相似文献   

8.
Photoalkylation, the ultraviolet irradiation of DNA with isopropanol and di-tert-butylperoxide, causes a variety of base alterations. These include 8-(2-hydroxy-2-propyl)guanines, 8-(2-hydroxy-2-propyl)adenines and thymine dimers. An E. coli endonuclease against photoalkylated DNA was assayed by conversion of superhelical PM2 phage DNA to the nicked form. Enzyme activities were compared between extracts of strain BW9109 (xth-), lacking exonuclease III activity, and strain BW434 (xth-,nth-), deficient in both exonuclease III and endonuclease III. The endonuclease level in the double mutant against substrate photoalkylated DNA was under 20% of the activity in the mutant lacking only exonuclease III. Irradiation of the DNA substrate in the absence of isopropanol did not affect the activity in either strain. Analysis by polyacrylamide gel electrophoresis identified the sites of DNA cleavage by purified E. coli endonuclease III as cytosines, both in DNA irradiated at biologically significant wavelengths and in photoalkylated DNA. Neither 8-(2-hydroxy-2-propyl)purines, pyrimidine dimers, uracils nor 6-4'-(pyrimidin-2'-one)pyrimidines were substrates for the enzyme.  相似文献   

9.
In Escherichia coli, the repair of lethal DNA damage induced by H(2)O(2) requires exonuclease III, the xthA gene product. Here, we report that both endonuclease IV (the nfo gene product) and exonuclease III can mediate the repair of lesions induced by H(2)O(2) under low-iron conditions. Neither the xthA nor the nfo mutants was sensitive to H(2)O(2) in the presence of iron chelators, while the xthA nfo double mutant was significantly sensitive to this treatment, suggesting that both exonuclease III and endonuclease IV can mediate the repair of DNA lesions formed under such conditions. Sedimentation studies in alkaline sucrose gradients also demonstrated that both xthA and nfo mutants, but not the xthA nfo double mutant, can carry out complete repair of DNA strand breaks and alkali-labile bonds generated by H(2)O(2) under low-iron conditions. We also found indications that the formation of substrates for exonuclease III and endonuclease IV is mediated by the Fpg DNA glycosylase, as suggested by experiments in which the fpg mutation increased the level of cell survival, as well as repair of DNA strand breaks, in an AP endonuclease-null background.  相似文献   

10.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

11.
A mouse repair enzyme having priming activity on bleomycin-damaged DNA for DNA polymerase was purified to apparent homogeneity and characterized. The enzyme extracted from permeabilized mouse ascites sarcoma (SR-C3H/He) cells with 0.2 M potassium phosphate buffer (pH 7.5) was purified by successive chromatographies on phosphocellulose, DEAE-cellulose, phosphocellulose (a second time), Sephadex G-100, single-stranded DNA cellulose and hydroxyapatite. The purified enzyme has an Mr of 34,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatical studies indicated that it is a multifunctional enzyme having exonuclease, apurinic/apyrimidinic endonuclease and phosphatase activities, similar to Escherichia coli exonuclease III. This enzyme is tentatively designated as APEX nuclease for apurinic/apyrimidinic endonuclease and exonuclease activities. The amino acid composition, amino-terminal amino acid sequence and an internal amino acid sequence of APEX nuclease are determined.  相似文献   

12.
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.  相似文献   

13.
Escherichia coli possesses two DNA glycosylase/apurinic lyase activities with overlapping substrate specificities, endonuclease III and endonuclease VIII, that recognize and remove oxidized pyrimidines from DNA. Endonuclease III is encoded by the nth gene. Endonuclease VIII has now been purified to apparent homogeneity, and the gene, nei, has been cloned by using reverse genetics. The gene nei is located at 16 min on the E. coli chromosome and encodes a 263-amino-acid protein which shows significant homology in the N-terminal and C-terminal regions to five bacterial Fpg proteins. A nei partial deletion replacement mutant was constructed, and deletion of nei was confirmed by genomic PCR, activity analysis, and Western blot analysis. nth nei double mutants were hypersensitive to ionizing radiation and hydrogen peroxide but not as sensitive as mutants devoid of base excision repair (xth nfo). Single nth mutants exhibited wild-type sensitivity to X rays, while nei mutants were consistently slightly more sensitive than the wild type. Double mutants lacking both endonucleases III and VIII exhibited a strong spontaneous mutator phenotype (about 20-fold) as determined by a rifampin forward mutation assay. In contrast to nth mutants, which showed a weak mutator phenotype, nei single mutants behaved as the wild type.  相似文献   

14.
Contradictory data have recently been published from two different laboratories on the presence vs absence of an intrinsic endonucliolytic activity of E. coli exonuclease III at apurinic sites in double-stranded DNA. It is shown here that an endonuclease activity of this specificity co-chromatographs exactly with exonuclease III on phosphocellulose and Sephadex G-75 columns, indicating that the endonuclease and exonuclease activities are due to the same enzyme. In addition, another E. coli endonuclease specific for apurinic sites exists, which can be separated from exonuclease III by the same chromatographic procedures.  相似文献   

15.
An endonuclease which hydrolyzes depurinated DNA has been purified from extracts of Bacillus subtilis cells. The endonuclease is a monomeric protein and has a molecular weight of around 56,000. The enzyme is specific for apurinic sites in double-stranded DNA, has a pH optimum at 8.0, and is slightly stimulated with 50 mM NaCl but completely inhibited with 500 mM NaCl. It requires no divalent cations and is insensitive to EDTA; it has no associated exonuclease. These properties are very similar to those of Escherichia coli endonuclease IV, which is also insensitive to EDTA and has no exonuclease activity, and very different from those of the main endonuclease for apurinic sites (endonuclease IV) of the same bacterium.  相似文献   

16.
  • 1.1. Sequence analyses of APEX nuclease, a mammalian major apurinic/apyrimidinic (AP) endonuclease homologous to Escherichia coli exonuclease III, suggested that APEX nuclease is organized into two domains, a Mr 6000 N-terminal domain containing nuclear location signals and a Mr 29,000 C-terminal catalytic domain.
  • 2.2. In order to study the enzyme structure further, vectors expressing APEX nuclease (pTAPXH1) and the Mr 29,000 C-terminal region (pTAPXH61) were constructed using cDNA (APX cDNA) for the human APEX nuclease and pTrc99A plasmid. The constructs were introduced into BW2001 strain (xth-11, nfo-2) cells of E. coli to produce transformants designated as BW2001/pTAPXH1 and BW2001/pTAPXH61, respectively. Both the APEX nuclease expressed in BW2001/pTAPXH1 and the Mr 29,000 C-terminal peptide expressed in BW2001/pTAPXH61 were partially purified by column chromatography and highly purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
  • 3.3. The purified APEX nuclease and the Mr 29,000 C-terminal peptide both showed equally high AP endonuclease activity which indicates that the Mr 29,000 C-terminal region of the APEX nuclease is (or contains) the AP endonuclease domain.
  相似文献   

17.
The responses of Escherichia coli to X rays and hydrogen peroxide were examined in mutants which are deficient in one or more DNA repair genes. Mutant cells deficient in either exonuclease III (xthA) or endonuclease IV (nfo) had normal resistance to X rays, but an xthA-nfo double mutant showed a sensitivity increased over that of either parental strain. A DNA polymerase I mutant (polA) was more sensitive than the xthA-nfo mutant. Cells bearing mutations in all of the polA, xthA, and nfo genes were more sensitive to X rays than polA and xthA-nfo mutants. Similar repair responses were obtained by exposing these mutant cells to hydrogen peroxide, with the exception of the xthA mutant, which was hypersensitive to this agent. The DNA polymerase III mutant (polC(Ts)) was slightly more sensitive to the agents than the wild-type strain at the restrictive temperature. The sensitivity of the polC-xthA-nfo mutant to X rays and hydrogen peroxide was greater than that of polC but almost the same as that of the xthA-nfo mutant. From these results it appears that there are at least four repair pathways, the DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase III-, and exonuclease III/endonuclease IV-dependent pathways, for the repair of oxidative DNA damages in E. coli.  相似文献   

18.
The development of bacteriophage T7 was examined in an Escherichia coli double mutant defective for the two major apurinic, apyrimidinic endonucleases (exonuclease III and endonuclease IV, xth nfo). In cells infected with phages containing apurinic sites, the defect in repair enzymes led to a decrease of phage survival and a total absence of bacterial DNA degradation and of phage DNA synthesis. These results directly demonstrate the toxic action of apurinic sites on bacteriophage T7 at the intracellular level and its alleviation by DNA repair. In addition, untreated T7 phage unexpectedly displayed reduced plating efficiency and decreased DNA synthesis in the xth nfo double mutant.  相似文献   

19.
Greenberg MM  Weledji YN  Kim J  Bales BC 《Biochemistry》2004,43(25):8178-8183
2-Deoxyribonolactone (L) and the C4'-oxidized abasic site (C4-AP) are produced by a variety of DNA-damaging agents. If not repaired, these lesions can be mutagenic. Exonuclease III and endonuclease IV are the major enzymes in E. coli responsible for 5'-incision of abasic sites (APs), the first steps in AP repair. Endonuclease III efficiently excises AP lesions via intermediate Schiff-base formation. Incision of L and C4-AP lesions by exonuclease III and endonuclease IV was determined under steady-state conditions using oligonucleotide duplexes containing the lesions at defined sites. An abasic lesion (AP) in an otherwise identical DNA sequence was incised by exonuclease III or endonuclease IV approximately 6-fold more efficiently than either of the oxidized abasic sites (L, C4-AP). Endonuclease IV incision efficiency of 2-deoxyribonolactone or C4-AP was independent of whether the lesion was opposite dA or dG. 2-Deoxyribonolactone is known to cross-link to endonuclease III (Hashimoto, M. (2001) J. Am. Chem. Soc. 123, 3161.). However, the C4-AP lesion is efficiently excised by endonuclease III. Oxidized abasic site repair by endonuclease IV and endonuclease III (C4-AP only) is approximately 100-fold less efficient than repair by exonuclease III. These results suggest that the first step of C4-AP and L oxidized abasic site repair will be the same as that of regular AP lesions in E. coli.  相似文献   

20.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号