首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.  相似文献   

2.
3.
4.
5.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

6.
Moshe Szyf 《遗传学报》2013,40(7):331-338
The impact of early physical and social environments on life-long phenotypes is well known. Moreover, we have documented evidence for gene–environment interactions where identical gene variants are associated with different phenotypes that are dependent on early life adversity. What are the mechanisms that embed these early life experiences in the genome? DNA methylation is an enzymatically-catalyzed modification of DNA that serves as a mechanism by which similar sequences acquire cell type identity during cellular differentiation and embryogenesis in the same individual. The hypothesis that will be discussed here proposes that the same mechanism confers environmental-exposure specific identity upon DNA providing a mechanism for embedding environmental experiences in the genome, thus affecting long-term phenotypes. Particularly important is the environment early in life including both the prenatal and postnatal social environments.  相似文献   

7.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

8.
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.  相似文献   

9.
Over the past decade genomic approaches have begun to revolutionise the study of animal diversity. In particular, genome sequencing programmes have spread beyond the traditional model species to encompass an increasing diversity of animals from many different phyla, as well as unicellular eukaryotes that are closely related to the animals. Whole genome sequences allow researchers to establish, with reasonable confidence, the full complement of any particular family of genes in a genome. Comparison of gene complements from appropriate genomes can reveal the evolutionary history of gene families, indicating when both gene diversification and gene loss have occurred. More than that, however, assembled genomes allow the genomic environment in which individual genes are found to be analysed and compared between species. This can reveal how gene diversification occurred. Here, we focus on the Fox genes, drawing from multiple animal genomes to develop an evolutionary framework explaining the timing and mechanism of origin of the diversity of animal Fox genes. Ancient linkages between genes are a prominent feature of the Fox genes, depicting a history of gene clusters, some of which may be relevant to understanding Fox gene function.  相似文献   

10.
病毒诱导的基因沉默及其在植物基因功能研究中的应用   总被引:9,自引:0,他引:9  
RNA介导的基因沉默是近年来在生物体中发现的一种基于核酸水平高度保守的特异性降解机制.病毒诱导的基因沉默(virus induced gene silencing, VIGS)是指携带植物功能基因cDNA的病毒在侵染植物体后,可诱导植物发生基因沉默而出现表型突变,进而可以研究该目的基因功能.至今,已经建立了以RNA病毒、DNA病毒、卫星病毒和DNA卫星分子为载体的VIGS体系,这些病毒载体能在多种寄主植物(包括拟南芥、番茄和大麦)上有效抑制功能基因的表达.VIGS已开始应用于N基因和Pto基因介导的抗性信号途径中关键基因的功能研究、抗病毒相关的寄主因子研究以及植物代谢和发育调控研究.在当前植物基因组或EST序列大量测定的情况下,VIGS为植物基因功能鉴定提供了有效的技术平台.  相似文献   

11.
The genome copy numbers of seven crenarchaeal species of four genera have been reported. All of them are monoploid and thus this seems to be a characteristic feature of Crenarchaeota. In stark contrast, none of six species representing six euryarchaeal genera is monoploid. Therefore Euryarchaea are typically oligoploid or polyploidy and their genome copy numbers are tightly regulated in response to growth phase and/or growth rate. A theoretical consideration called 'Muller's ratchet' predicts that asexually reproducing polyploid species should not be able to exist. An escape from Muller's ratchet would be a mechanism leading to the equalization of genome copies, such as gene conversion. Using two species of methanogenic and halophilic archaea, it was shown that heterozygous cells containing different genomes simultaneously can be selected, exemplifying gene redundancy as one possible evolutionary advantage of polyploidy. In both cases, the genomes were rapidly equalized in the absence of selection, showing that gene conversion operates at least in halophilic and methanogenic Euryarchaea.  相似文献   

12.
Within the last decade, a number of nucleic acid-based gene targeting strategies have been developed with the ultimate goal to cure human genetic disorders caused by mutations. Thus far, site-directed gene targeting is the only procedure that can make predefined alterations in the genome. The advantage of this approach is that expression of the corrected gene is regulated in the same way as a normal gene. In addition, targeted specific mutations can be made in the genome for functional analysis of proteins. Several approaches, including chimeric RNA-DNA oligonucleotides, short single-stranded oligonucleotides, small fragment homologous replacements, and triple-helix-forming oligonucleotides have been used for targeted modification of the genome. Due to the absence of standardized assays and mechanistic studies in the early developmental stages of oligonucleotide-directed gene alteration, it has been difficult to explain the large variations and discrepancies reported. Here, we evaluate the progress in the field, summarize the achievements in understanding the molecular mechanism, and outline the perspective for the future development. This review will emphasize the importance of reliable, sensitive and standardized assays to measure frequencies of gene repair and the use of these assays in mechanistic studies. Such studies have become critical for understanding the gene repair process and setting realistic expectations on the capability of this technology. The conventionally accepted but unproven dogmas of the mechanism of gene repair are challenged and alternative points of view are presented. Another important focus of this review is the development of general selection procedures that are required for practical application of this technology.  相似文献   

13.
真核基因可变剪接研究现状与展望   总被引:2,自引:0,他引:2  
mRNA前体(pre-mRNA)的可变剪接是控制基因表达和产生蛋白质多样性的重要机制,是功能基因组时代的研究重点之一。生物信息学在识别可变剪接基因及其结构、分析可变剪接的功能和调控方式等方面具有重要作用。除了耗时的实验研究,识别可变剪接基因及其结构主要通过EST、mRNA等转录数据与基因组序列进行比对,获得同一基因的不同结构方式。分析蛋白质产物可对可变剪接的功能进行预测;潜在调控元件的统计分析则可为可变剪接调控机制的研究提供必要的数据。转录数据的时空信息以及比较基因组学对理解可变剪接信息的精确调控将提供重要资料。可变剪接及其调控机制的深入研究将为基因组和蛋白质组之间的对接提供重要的桥梁。  相似文献   

14.
15.
16.

Background  

Amplifications, regions of focal high-level copy number change, lead to overexpression of oncogenes or drug resistance genes in tumors. Their presence is often associated with poor prognosis; however, the use of amplification as a mechanism for overexpression of a particular gene in tumors varies. To investigate the influence of genome position on propensity to amplify, we integrated a mutant form of the gene encoding dihydrofolate reductase into different positions in the human genome, challenged cells with methotrexate and then studied the genomic alterations arising in drug resistant cells.  相似文献   

17.
三维基因组学是以研究真核生物核内基因组空间构象,及其对不同基因转录调控的生物学效应为主要研究内容的一个新的学科方向;也是后基因组学时代研究的一个热门领域。它的研究重点是空间构象与基因转录调控间的关系。通过三维基因组学技术,科学家将能对基因组的折叠和空间构象、转录调控机制、复杂生物学性状、信号传导通路和基因组的运行机制等一系列重要问题进行更深入的探讨和研究,为系统解读生命百科全书和精准生物学的实施奠定坚实基础。本文综述了目前三维基因组学研究领域中的主要技术、研究现状、科研进展、存在问题、未来及与精准生物学的关系等内容。以期能较系统地展示三维基因组学取得的一系列成果,解读从三维空间构象信息到不同基因功能研究的路径,精准决定在转录调控网络中不同基因表达的时空特异性的可能模式。  相似文献   

18.
19.
20.
CRISPR-Cas9[Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated (Cas)9]是近年兴起的一种高特异性和高效的基因编辑新技术,由向导RNA(single guide RNA,sgRNA)和cas9(CRISPR-associated 9)蛋白组成,引起DNA位点特异性双链断裂(double-strand breaks,DSBs),引发同源重组修复(homology-directed repair,HDR)或非同源末端连接修复(non-homologous end joining,NHEJ),达到靶基因修饰的作用。CRISPR-Cas9技术自发现以来,因其便于操作、花费较低、高特异性、可同时打靶任意数量基因等优点而被应用。近年研究显示,对于一些遗传性疾病,可通过CRISPR-Cas9精确的基因编辑破坏致病的内源基因、改正引起疾病的突变体或插入新的保护性基因进行治疗,该技术为基因治疗开启了一个新方向。主要从CRISPR-Cas9结构、作用机制及在疾病基因治疗上的应用等方面进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号