首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mean solution conformation of tetrapeptide fragments of the hinge region of human IgA1 molecule was investigated by CD and 13C-NMR methods. Distinct conformational differences for the partial sequences were found. Tetrapeptides with the Thr-Pro-Ser-Pro sequence were found to show a clear preference for the beta-turn conformation. Conformational equilibria of these peptides are only slightly affected by acetylation or pH changes. In the case of Pro-Thr-Pro-Ser tetrapeptides conformational equilibria are dominated by unordered forms.  相似文献   

2.
Theoretical conformational analysis was carried out for several tetrapeptide analogues of beta-casomorphin and dermorphin containing a Phe residue in position 3. Sets of low-energy backbone structures of the mu-selective peptides [N-Me-Phe3, D-Pro4]-morphiceptin and Tyr-D-Orn-Phe-Asp-NH2 were obtained. These sets of structures were compared for geometrical similarity between themselves and with the low-energy conformations found for the delta-selective peptide Tyr-D-Cys-Phe-D-Pen-OH and nonactive peptide Tyr-Orn-Phe-Asp-NH2. Two pairs of geometrically similar conformations of mu-selective peptides, sharing no similarity with the conformations of peptides showing low affinity to the mu-receptor, were selected as two alternative models of probable mu-receptor-bound backbone conformations. Both models share geometrical similarity with the low-energy structures of the linear mu-selective peptide Tyr-D-Ala-Phe-Phe-NH2. Putative binding conformations of Tyr1 and Phe3 side chains are also discussed.  相似文献   

3.
Peptide T (ASTTTNYT), a segment corresponding to residues 185-192 of gp120, the coat protein of HIV, has several important biological properties in vitro that have stimulated the search for simpler and possibly more active analogs. We have previously shown that pseudocyclic hexapeptide analogs containing the central residues of peptide T retain considerable chemotactic activity. We have now extended the design of this type of analogs to peptides containing different aromatic residues and/or Ser in lieu of Thr. The complex conformation-activity relationship of these analogs called for a reexamination of the basic conformational tendencies of peptide T itself. Here, we present an exhaustive NMR conformational study of peptide T in different media. Peptide T assumes a gamma-turn in aqueous mixtures of ethylene glycol, a type-IV beta-turn conformation in aqueous mixtures of DMF, and a type-II beta-turn conformation in aqueous mixtures of DMSO. The preferred conformations for the analogs were derived from modeling, starting from the preferred conformations of peptide T. The best models derived from the gamma-turn conformation of peptide T are those of peptides XII (DSNYSR), XIII (ETNYTK) and XVI (ESNYSR). The best models derived from the type-IV beta-turn conformation of peptide T are those of peptides XIV (KTTNYE) and XV (DSSNYR). No low-energy models could be derived starting from the type-II beta-turn conformation of peptide T. The analogs with the most favored conformations are also the most active in the chemotactic test.  相似文献   

4.
Peptide T (ASTTTNYT), a fragment corresponding to residues 185-192 of gp120, the coat protein of HIV, is endowed with several biological properties in vitro, notably inhibition of the binding of both isolated gp120 and HIV-1 to the CD4 receptor, and chemotactic activity. Based on previous nuclear magnetic resonance (NMR) studies performed in our laboratory, which were consistent with a regular conformation of the C-terminal pentapeptide, and SAR studies showing that the C-terminal pentapeptide retains most of the biological properties, we designed eight hexapeptides containing in the central part either the TNYT or the TTNY sequence, and charged residues (D/E/R) at the two ends. Conformational analysis based on NMR and torsion angle dynamics showed that all peptides assume folded conformations. albeit with different geometries and stabilities. In particular, peptides carrying an acidic residue at the N-terminus and a basic residue at the C-terminus are characterized by stable helical structures and retain full chemotactic activity. The solution conformation of peptide ETNYTR displays strong structural similarity to the region 19-26 of both bovine pancreatic and bovine seminal ribonuclease, which are endowed with anti-HIV activity. Moreover, the frequent occurrence, in many viral proteins, of TNYT and TTNY, the two core sequences employed in the design of the hexapeptides studied in the present work, hints that the sequence of the C-terminal pentapeptide TTNYT is probably representative of a widespread viral recognition motif.  相似文献   

5.
Peptide T, from the human immunodeficiency virus (HIV), whose sequence is Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr, has been shown to inhibit attachment of this virus to T cells and neural cells bearing the CD4 receptor. This peptide shares extensive homology with the 19–26 segment of ribonuclease A (RNase A), whose sequence is Ala-Ala-Ser-Ser-Ser-Asn-Tyr-Cys. Based on comparison of the structures of peptides occurring in proteins of known structure that are homologous to peptide T,viz, RNase A and endothiapepsin and on conformational energy calculations, we predicted that peptide T adopts a structure much like that for residues 19–26 in RNase A. A critical feature is a bend involving residues Thr 4-Asn 7 in peptide T corresponding to Ser 22-Tyr 25 in the RNase A peptide. Our proposed structure for peptide T has recently been confirmed by Cotelleet al. (Biochem. Biophys. Res. Commun. 171, 596–602). We now show directly that the RNase A peptide, with Met replacing Cys 26 to prevent disulfide exchange reactions, strongly induces monocyte-chemotaxis that is blocked by anti-CD4 monoclonal antibody. Both peptide T and RNase A fail to induce chemotaxis, however, in neutrophils which do not express surface CD4 receptors. These results suggest that both peptides interact with the CD4 receptor in inducing monocyte chemotaxis. We have also prepared cyclo-RNase A peptide with Met 26. Using molecular dynamics and conformational energy calculations, we find that the cyclic peptide cannot form a bend structure involving Ser 22-Tyr 25 that is superimposable on the RNase A bend. Indeed, we find that this peptide is inactive in inducing monocyte chemotaxis despite the fact that its amino acid sequence is identical to that of the open chain form. This result suggests that a correlation between the -bend structure of the RNase A peptide and peptide T and their abilities to bind to the CD4 receptor.  相似文献   

6.
A homology has been found between an octapeptide involved in attachment of the human immunodeficiency virus to helper/inducer T cells and an octapeptide segment of bovine pancreatic ribonuclease A. This segment (residues 19-26) contains the sites for subtilisin cleavage of this enzyme into the S-peptide and S-protein. From the X-ray crystal structure of ribonuclease, this sequence is known to be exposed to solvent and interacts little with the rest of the protein. A structure for the human immunodeficiency virus attachment peptide can be deduced from this homology, as a well-defined structure has been determined for this sequence in ribonuclease. This can be readily accomplished using previously developed computer methods based upon conformational energy calculations. The calculated structure for human immunodeficiency virus peptide is identical to the ribonuclease segment (19-26) in backbone conformation. It is stabilized by internal interactions of nonpolar residues, and by exposure of polar hydroxyl groups. The results suggest that the T-cell human immunodeficiency virus receptor may be hydrophilic in nature and that conservation of the sequence in two presumably functionally unrelated proteins is related to the need for conservation of exposed structure.  相似文献   

7.
Highly active fluorescent compounds having kappa opioid activity were identified following the screening in a kappa-specific radioligand binding assay of a positional scanning tetrapeptide combinatorial library in which every tetrapeptide was fluorescently labeled. Lissamine rhodamine B sulfonyl chloride was coupled to the N terminal of a mixture-based tetrapeptide positional scanning library made up of over 7.3 million tetrapeptides. Upon determination of the most active mixtures for each position of the library in the kappa binding assay, individual rhodamine labeled tetrapeptides were then synthesized and tested to determine their activities. Eight individual rhodamine labeled peptides were identified that were specific for the kappa opioid receptor, having binding affinities ranging from 5-20 nM. These peptides were poor inhibitors at the mu and delta receptors (K(i)>5,000 nM). Furthermore, neither rhodamine itself nor these same tetrapeptides lacking the N-terminal rhodamine had any significant activity at the kappa receptor, indicating that both the tetrapeptide sequence and the rhodamine moiety are required for receptor binding. This study has demonstrated that novel fluorescent compounds with intrinsic activity can be identified through the use of combinatorial chemistry.  相似文献   

8.
To define regions within fibronectin (Fn) recognized by platelet binding sites, inhibition of Fn binding by an Fn fragment and synthetic peptides has been analyzed. A highly purified 120-kDa chymotryptic fragment, which has cell attachment activity but did not bind to insolubilized heparin or gelatin, inhibited Fn binding to platelets with an ID50 approximately 3 microM. Previous work indicates that fibroblasts attach to an 11.5-kDa subfragment of this 120-kDa fragment, and that one of four 30-residue synthetic peptides containing sequences from this region supports cell attachment. Only the peptide containing the COOH terminus of the 11.5-kDa fragment inhibited Fn binding to platelets, with an ID50 approximately 10 microM and is the peptide which supports fibroblast attachment. Of the smaller peptides studied from this sequence, all peptides containing the Arg-Gly-Asp-Ser sequence, including the tetrapeptide itself, were active in inhibiting Fn binding to platelets (ID50 values approximately 10-20 microM). The same peptides support fibroblast attachment. Those which lacked this sequence including Gly-Asp-Ser-Pro and Thr-Gly-Arg-Gly (immediately adjacent tetrapeptides) lacked both activities. Further evidence for specificity of inhibition was provided by structurally modified peptides in which substitution of a Glu for Asp abolished inhibitory activity and substitution of Lys for Arg or Ala for Gly reduced activity 6- and 8-fold, respectively. In addition, Arg-Gly-Asp-Ser-containing peptides inhibited the rate and extent of thrombin-induced platelet aggregation. These data suggest that the Arg-Gly-Asp-Ser tetrapeptide contains a recognition specificity involved in the binding of Fn to platelets and that platelets share features of this recognition specificity with fibroblasts.  相似文献   

9.
The Aib-D Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx=DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3 OH. The β-turn conformations (type-I'/III) stabilized by intramolecular 4→1 hydrogen bonds are observed for the peptide Boc-Aib-D Ala-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4→1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-Leu-NHMe (3) adopts a novel α-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4→1 and one 5→1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of an NOE between Val (1) NH?HNCH3 (5) in CD3OH suggests, that the solid state conformation is maintained in methanol solutions.  相似文献   

10.
Intramolecularly hydrogen-bonded peptide conformations   总被引:1,自引:0,他引:1  
Over the past few years the possible occurrence of intramolecularly hydrogen-bonded structures in linear and cyclic peptides has attracted increasing attention. In this review emphasis is given to solid-state studies, particularly by X-ray diffraction and infrared absorption techniques. Conformational energy calculations are also considered. The discussion is focused both on model peptides and biological activity polypeptide molecules. The tetrapeptide system (Formula: see text), examined allows one to discuss the extended C5 structure and the various folded conformations, namely the C7 (gamma-turn), C8, C10 (beta-turn), C11, and C13 conformations. The four latter forms may include cis peptide configurations. The oxy-analogs to the C7, C10, and C13 conformations and structures containing bifurcated hydrogen bonds are also discussed. The last sections describe intramolecularly hydrogen-bonded peptide structures involving: (1) a side-chain group, (2) the N-protecting group (in synthetic model compounds), and (3) a beta-amino acid.  相似文献   

11.
Conformational energy calculations have been carried out to determine the relative stabilities of the C-terminal sequence 105–124 of ribonuclease A, withcis andtrans forms, respectively, of Asn 113-Pro 114. Thecis form of Pro 114 is the one that occurs in the native protein. This peptide contains the sequence 106–118, which, on the basis of both theoretical and experimental studies, is thought to constitute the primary nucleation site for the folding of ribonuclease A. It is shown that both conformations of the isolated peptide (with Pro 114 in thecis andtrans forms, respectively) are of approximately equal stability. Both forms have similar conformations from residues 105–110 and 118–124, while they differ in the bend region involving residues 111–117. Calculations have also been carried out to deduce the possible low-energy paths for the interconversion between thecis andtrans forms of both Pro 114 and Pro 117. It is shown that there are two low-energy paths (with a minimum activation energy of 16.5 kcal/mole) for the interconversion of Pro 114. Attractive nonbonded interaction energies stabilize the transition state on these paths. Only one relatively low-energy path (with an activation energy of 18 kcal/mole) could be found for the isomerization of Pro 117, which occur in thetrans form in the native protein; in this case, allcis forms have significantly higher energy than thetrans form. These calculations thus show that native-like forms for the isolated peptide can exist with Pro 114 in either thecis or thetrans form and that these forms are readily interconvertible.  相似文献   

12.
The octapeptide Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr (peptide T) and two structural analogs are potent agonists of human monocyte chemotaxis, evincing identical rank potency orders as was previously shown for their inhibition of human immunodeficiency virus (HIV) envelope binding and T cell infectivity. Chemotactic activity could be inhibited by anti-CD4 monoclonal antibodies (Mabs), but not other mononuclear cell Mabs. The core peptide required for chemotactic activity is a pentapeptide related to the sequence Thr-Thr-Asn-Tyr-Thr. Homologous pentapeptides, identified by computer search, were detected in several other non-HIV-related viruses as well as the neuropeptide vasoactive intestinal polypeptide (VIP). The CD4 molecule, therefore, appears to be a recognition molecule for a small signal peptide ligand whose active sequence is a homolog of peptide T and which may be the neuropeptide VIP.  相似文献   

13.
Low-energy conformations of a set of tetrapeptides derived from the small protein bovine pancreatic trypsin inhibitor (BPTI) were generated by a build-up procedure from the low-energy conformations of single amino acid residues. At each stage, various-size fragments were built up from all combinations of smaller ones, the total energies were then minimized, and the low-energy conformations were retained for the next stage. The energies of the tetrapeptides were re-ordered by including the effects of hydration. No information other than the amino acid sequence was used to obtain the low-energy conformations of the hydrated tetrapeptides. The latter were then supplemented with a limited set of simulated NMR distance information, derived from the X-ray structure of BPTI, to provide a basis for building the rest of the whole protein molecule by the same procedure. A total of 189 upper bounds, plus 12 pairs of upper and lower bounds pertaining to the location of the three disulfide bonds in this molecule, were used. Four sets of conformations of the entire molecule were generated by utilizing different combinations of smaller fragments. It was possible to obtain low-energy conformations with small rms deviations, 1.1 to 1.4 A for the alpha-carbons, from the structure derived by X-ray diffraction. The average deviations of the backbone dihedral angles were also low, viz. 23 degrees to 26 degrees.  相似文献   

14.
In previous studies we have investigated octapeptides backbone-cyclized by (4-amino)phenyl azobenzoic acid (APB) or (4-aminomethyl)phenylazobenzoic acid (AMPB) and containing the active-site sequence Cys-Ala-Thr-Cys-Asp from the thioredoxin reductase. The conformational and redox properties of these peptides were strongly dependent on the isomeric state of the azobenzene chromophore. Using the same approach we were successful in constructing photoresponsive ligands for alphavbeta3 integrin containing the Arg-Gly-Asp (RGD) sequence as binding motif. For achieving maximal conformational restriction of the peptide a reduced ring size compared to our previous azobenzene peptides was employed in the cyclic peptide c[Asp-D-Phe-Val-AMPB-Lys-Ala-Arg-Gly-]. Conformational properties of the trans and cis isomers of this peptide in solution were investigated by CD and NMR and were found to differ markedly from the thioredoxin derived azobenzene peptides. In a second peptide, c[Asp-D-Phe-Val-Lys-AMPB-Ala-Arg-Gly-], shifting the position of the chromophore lead to a marked decrease in affinity. With the availability of the x-ray structure of a cyclic RGD-pentapeptide bound to alphavbeta3 integrin (PDB entry 1L5G) modeling of possible bound conformations for trans and cis isomers of both azobenzene peptides was possible. Notably, both peptides in either isomeric form share the same overall conformation in the bound state according to our molecular dynamics simulations.  相似文献   

15.
The conformational analysis by NMR, IR, and molecular modeling of tetrapeptides containing morpholine-3-carboxylic acid (Mor) as a proline surrogate is presented. The relationship between the chirality of the cyclic amino acid at position i+1 and the turn propensity is maintained with respect to the reference proline-containing peptides, although marked differences in the type of folded structures were observed. The conformational profile of morpholine-containing turn peptides as a function of the chirality of the cyclic amino acid indicated that the heterochiral tetrapeptide containing the D-isomer of the cyclic amino acid is more prone to nucleate compact folded structures, although with no resemblance to the beta-turn structures of D-proline-containing peptides. Also, the solvation system proved to influence the organization of folded structures, as in the more interactive CD(3)CN the model peptides showed more compact conformations. The L-Mor-containing peptide displayed two rotamers at the Val-Mor amide bond. The trans isomer did not experience any turn structures, nor any intramolecular hydrogen-bonds, whereas the cis isomer showed a strong preference for a type VI beta-turn structure, thus providing a different conformational asset with respect to the beta-turn structure as reported for the reference L-proline model peptide.  相似文献   

16.
The Conformational properties of synthetic S-peptide analogs, in which the residues in the N-terminal sequence 1–6 were progressively deleted or replaced with amino acids of lower helical propensity, were studied by CD. Increasing the concentration of guanidine hydrochloride and decreasing the temperature were found to produce progressive destruction of ordered conformations, in the parallel with the increasing solubility of the peptide unit, while increasing the concentration of trifluoroethanol and decreasing the temperature produced the opposite effect. The maximum helicity determined in the these sets of experiments is found equal to or greater than that determined in the formation of the ribonuclease S′ complexes. With some peptides the maximum value of predicted helical conformation is reached, and the tendency of tertiary structure to reduce the maximum possible helicity is evident. We discuss the validity of the procedure by which conformational information, drawn from measurements in helicogenic solvents, is related to the state in native protein.  相似文献   

17.
Peptide libraries corresponding to a presumed mixture of 50,625 tetrapeptides or 16,777,216 hexapeptides were each prepared in a single assembly by standard solid-phase peptide synthesis. By enzyme-linked immunosorbent assay, the tetrapeptide library was shown to inhibit the binding of an antiserum to FMRF amide with an FLRF capture antigen; the hexapeptide library was shown to inhibit the binding of a monoclonal antibody to a 28 amino acid peptide with the corresponding peptide capture antigen. An iterative strategy of variation was used to determine for each position in the tetra- or hexapeptides which amino acid contributed the most to activity. As a result we were able to logically select out of the tetrapeptide library the sequence FLRF and to select out of the hexapeptide library a sequence that differed from the apparent probable epitope but was twice as active. A single amino acid substitution in the logically derived sequence gave a peptide that was 35 times as active as the hexapeptide sequence in the original 28 amino acid peptide.  相似文献   

18.
The T cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. In order to identify primary sequences within the CD4 molecule that may be involved in the binding of the HIV-I envelope, we synthesized various peptides corresponding to the V1, V2, V3, and V4 domains of CD4. We tested the ability of these peptides to block the binding of purified HIV-I gp120 to CD4+ human lymphoblastic leukemia cells (CEM) using fluorescence-activated cell sorting. One of these peptides, corresponding to CD4 amino acids (74-95), when preincubated with gp120, blocked its subsequent binding to CEM cells by 80%. A truncated form of this peptide (81-95), was found to be as efficient as the longer peptide (74-95) in inhibiting the binding of gp120 to CEM cells. The same peptide did not block the binding of OKT4A or Leu3A anti-CD4 monoclonal antibodies, which were previously shown to block HIV-I binding to CD4. The peptides were also tested for their ability to block HIV-I infection of a T cell line in vitro. Only CD4 peptide (74-95) and the shorter fragment (81-95) succeeded in protecting T cells against infection with different HIV-I strains. All the other peptides examined had no effect on gp120 binding to CEM cells and did not block syncytia formation. Goat polyclonal antibodies against the CD4 peptide (74-95) gave modest interference of gp120 binding to CEM cells. These data suggest that the CD4 region (74-95) participates in the CD4-mediated binding and/or internalization of HIV-I virion.  相似文献   

19.
Systemic analysis of the peculiarities of distribution of di-, tri- and tetrapeptide residues in amino acid sequence of calmodulins of different origin has been carried out. A conclusion is made that all the examined repeated tri- and tetrapeptide residues with comparatively low conformation mobility enter the alpha-helical conformations with low mobility in beta-turns, and tri- and tetrapeptides with intermediate meaning of conformation entropy in beta-sheet conformations of the calmodulin molecule.  相似文献   

20.
A human leukocyte antigen A24-restricted CD8+ cytotoxic T-cell clone specific for gp41 of human immunodeficiency virus type 1 was isolated from an infected individual. The epitope was localized to amino acids 584 to 591 (YLKDQQLL, NL43 env sequence) of gp41 by using a panel of recombinant vaccinia viruses that contain truncated env genes and synthetic peptides. The clone killed autologous B-lymphoblastoid cell lines pulsed with a synthetic peptide reflecting the sequence of the IIIB and MN strains. This clone, however, failed to kill target cells pulsed with the peptides that have a mutation from Lys to Arg or Gln at amino acid 585 which is present in some prototype human immunodeficiency virus type 1 strains, e.g., ADA, JFL, SC, ALA1, BAL1, SF2, VRF, SF33, and WMJ2. This finding that a mutation at amino acid 585 on gp41 results in nonrecognition by human leukocyte antigen A24-restricted CD8+ cytotoxic T lymphocytes suggests that antigenic variation at T-cell epitopes contributes to the failure of immune control of human immunodeficiency virus type 1 infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号