首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

2.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

3.
Variants of trans-acting hammerhead ribozymes were modified with Locked Nucleic Acid (LNA) nucleotides to reduce their size, to improve access to their RNA target and to explore combinational properties of binary constructs. Using low Mg(2+) concentrations and low substrate and ribozyme concentrations, it was found that insertion of LNA monomers into the substrate binding arms allowed these to be shortened and results in a very active enzyme under both single and multiple turnover conditions. Incorporation of a mix of LNA and DNA residues further increased the multiple turnover cleavage activity. At high Mg(2+) concentrations or high substrate and ribozyme concentrations, the enhancing effect of LNA incorporation was even more prominent. Using LNA in the stem of Helix II diminished cleavage activity, but allowed deletion of the tetra-loop and thus separating the ribozyme into two molecules with each half binding to the substrate. Efficient, binary hammerhead ribozymes were pursued in a combinatorial approach using a 6-times 5 library, which was analysed concerning the best combinations, buffer conditions and fragment ratios.  相似文献   

4.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   

5.
From in vitro selection studies, DNA structures have been found that cleave target RNA sequence specifically and show a certain similarity to the well-investigated hammerhead ribozymes. Such DNA enzymes are more resistant to nuclease-mediated degradation than RNA enzymes. On the other hand, their cleavage activity is lower than the activity of hammerhead ribozymes. In the present study, we improved the activity of DNA enzymes by adding oligonucleotide facilitators complementary to the 5' and the 3' ends of the substrate to the cleavage reaction. DNA enzyme activity in vitro was monitored under multiple turnover conditions using short RNA model substrates. We have shown that oligonucleotide facilitators strongly enhance the multiple turnover activity of the DNA enzyme reaction. In one of our model systems with a suitable facilitator combination, we were able to observe a more than 200-fold enhancement of the k(cat)/Km value. The comparison of two DNA enzyme-substrate systems showed that the principal effects of the facilitators were independent of the substrate sequence. However, the degree of facilitator effect was noticeably dependent on the basic catalytic efficiency of DNA enzymes. Furthermore, the efficiency of the DNA enzyme reaction with facilitator was compared with the reaction of a DNA enzyme with a stem sequence extended by the sequence of the facilitator. The multiple turnover activity of such a "long DNA enzyme" is higher than the activity of the short DNA enzyme without facilitators. However, when compared with the multiple turnover reactions of the short DNA enzyme with facilitator, the reaction with the long DNA enzyme is considerably slower. The results obtained with our model systems demonstrate that oligonucleotide facilitators enable DNA enzymes to act as effective multiple turnover catalysts by cleavage of RNA substrates.  相似文献   

6.
Hammerhead ribozymes are considered to be potential therapeutic agents for HIV virus because of their site-specific RNA cleavage activities. In order to elucidate structure--function relationship and also to hopefully endow ribozymes with resistance to ribonucleases, we firstly synthesized chimeric DNA/RNA ribozymes in which deoxyribonucleotides were substituted for ribonucleotides at noncatalytic residues (stems I, II, and III). Kinetic analysis revealed that (i) DNA in the hybridizing arms (stems I and III) enhanced the chemical cleavage step. (ii) stem II and its loop do not affect its enzymatic activity. Secondly, we introduced deoxyribonucleotides with phosphorothioate linkages to the same regions (stems I, II, and III) in order to test whether such thio-linkages further improve their resistance to nucleases. Kinetic measurements revealed that this chimeric thio-DNA/RNA ribozyme had seven-fold higher cleavage activity (kcat = 27 min-1) than that of the all-RNA ribozyme. In terms of stability in serum, DNA-armed ribozymes gained about 10-fold higher stability in human serum but no increase in stability was recognized in bovine serum, probably because the latter serum mainly contained endoribonucleases that attacked unmodified catalytic-loop regions of these ribozymes. Thirdly, in order to protect them from endoribonucleases, three additional modifications were made at positions U7, U4 and C3 within the internal catalytic-loop region, that succeeded in gaining more than a hundred times greater resistance to nucleases in both serums. More importantly, these catalytic-loop modified ribozymes had the comparable cleavage activity (kcat) to the wild-type ribozyme. Since these chimeric thio-DNA/RNA ribozymes are more resistant to attack by both exonucleases and endoribonucleases than the wild-type all-RNA ribozymes in vivo and since their cleavage activities are not sacrificed, they appear to be better candidates than the wild type for antiviral therapeutic agents.  相似文献   

7.
Hammerhead ribozymes cleave RNA substrates containing the UX sequence, where X = U, C or A, embedded within sequences which are complementary to the hybridising 'arms' of the ribozyme. In this study we have replaced the RNA in the hybridising arms of the ribozyme with DNA, and the resulting ribozyme is many times more active than its precursor. In turnover-kinetics experiments with a 13-mer RNA substrate, the kcat/Km ratios are 10 and 150 microM-1min-1 for the RNA- and DNA-armed ribozymes, respectively. The effect is due mainly to differences in kcat. In independent experiments where the cleavage step is rate-limiting, the DNA-armed ribozyme cleaves the substrate with a rate constant more than 3 times greater than the all-RNA ribozyme. DNA substrates containing a ribocytidine at the cleavage site have been shown to be cleaved less efficiently than their all-RNA analogues; again however, the DNA-armed ribozyme is more effective than the all-RNA ribozyme against such DNA substrates. These results demonstrate that there are no 2'-hydroxyl groups in the arms of the ribozyme that are required for cleavage; and that the structure of the complex formed by the DNA-armed ribozyme with its substrate is more favourable for cleavage than that formed by the all-RNA ribozyme and its substrate.  相似文献   

8.
A new mode of allosteric regulation of nucleic acid enzymes is described and shown to operate effectively with hammerhead ribozymes. In the "TRAP" design (for targeted ribozyme-attenuated probe), a 3' terminal "attenuator" anneals to conserved bases in the catalytic core to form the "off" state of the ribozyme. Binding of RNA or DNA to an antisense sequence linking the ribozyme and attenuator frees the core to fold into an active conformation, even though the antisense sequence itself does not interfere with the ribozyme. TRAP hammerheads based on the previously characterized HH8 ribozyme were shown to be activated more than 250-fold upon addition of the sense strand. RNA oligonucleotides were more effective activators than DNA oligos, consistent with the known relative helix stabilities (RNA-RNA > RNA-DNA). Oligonucleotides that directly paired with the attenuator gave up to 1760-fold activation. The magnitude of the activation was greater when the oligo was added prior to folding than if it was added during the cleavage reaction. The TRAP design requires no prior knowledge of (deoxy)ribozyme structure beyond identification of the essential core. Thus, this approach should be readily generalizable to other systems for biomedicine, sensor technology, and additional applications.  相似文献   

9.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

10.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

11.
Several catalytic antisense RNAs directed against different regions of the genomic or antigenomic RNA of Sendai virus were constructed. All RNAs contained the same catalytic domain based on hammerhead ribozymes but some had deletions or mutations resulting in imperfect helices I and III. Pre-annealed substrate/ribozyme complexes were used to determine the rates of the cleavage process for the different ribozymes under single-turnover conditions. It was found that the sequence context surrounding the cleavable motif influenced the cleavage efficiencies. Deletions or mutations of nucleotides 2.1 or 15.1 and 15.2 according to the numbering system for hammerhead ribozymes of Hertel et al. destroyed catalytic activity. Deletions of nucleotide 2.2 or additional nucleotides in the helix I-forming region of the ribozyme did not destruct, but only reduced the cleavage efficiencies. Similar results were observed for a deletion of nucleotide 15.3. Simultaneous deletions within helices I and III resulted in alternative cleavage sites. The potential consequences for the specificity of the ribozyme reaction are discussed.  相似文献   

12.
Due to their mode of action, ribozymes show antisense effects in addition to their specific cleavage activity. In the present study we investigated whether a hammerhead ribozyme is capable of cleaving mutated Ki-ras mRNA in a pancreatic carcinoma cell line and whether antisense effects contribute to the activity of the ribozyme. A 2[prime]-O-allyl modified hammerhead ribozyme was designed to cleave specifically the mutated form of the Ki- ras mRNA (GUU motif in codon 12). The activity was monitored by RT-PCR on Ki- ras RNA expression by determination of the relative amount of wild type to mutant Ki-ras mRNA, by 5-bromo-2[prime]-deoxy-uridine incorporation on cell proliferation and by colony formation in soft agar on malignancy in the human pancreatic adenocarcinoma cell line CFPAC-1, which is heterozygous for the Ki-ras mutation. A catalytically inactive ribozyme was used as control to differentiate between antisense and cleavage activity and a ribozyme with random guide sequences as negative control. The catalytically active anti-Ki-ras ribozyme was at least 2-fold more potent in decreasing cellular Ki-ras mRNA levels, inhibiting cell proliferation and colony formation in soft agar than the catalytically inactive ribozyme. The catalytically active anti-Ki-ras ribozyme, but not the catalytically inactive or random ribozyme, increased the ratio of wild type to mutated Ki-ras mRNA in CFPAC-1 cells. In conclusion, both cleavage activity and antisense effects contribute to the activity of the catalytically active anti-Ki-ras hammerhead ribozyme. Specific ribozymes might be useful in the treatment of pancreatic carcinomas containing an oncogenic GTT mutation in codon 12 of the Ki-ras gene.  相似文献   

13.
Saksmerprome V  Burke DH 《Biochemistry》2003,42(47):13879-13886
Perturbations of precleavage equilibria in RNA-cleaving ribozymes can be exploited to control cleavage kinetics. In the targeted ribozyme-attenuated probes (TRAP) design, antisense and attenuator sequences are appended onto the catalytic core of a ribozyme or deoxyribozyme. The attenuator anneals to conserved bases in the catalytic core to form an inactive conformation, which is activated upon binding of a sense strand oligonucleotide to the antisense module. In this work, the apparent Michaelis-Menton constant (K'm) for the binding of the RNA substrate to the ribozyme is shown to be within a factor of 2 for a number of constructs whose observed cleavage rates varied by several 100-fold. These observations rule out models of allosteric regulation based on modulation of substrate binding affinity, instead favoring a model in which regulation arises from equilibration between the active and inactive conformations of the TRAP. Free energies of formation for isolated helices that are exchanged during this reequilibration were determined from the concentration dependence of optical melt data. These values established that the thermodynamic stabilities of sense-antisense duplexes and of the attenuator-core duplexes correlate with observed rates of cleavage. Notably reduced cleavage rates are observed for TRAP ribozymes with extended antisense sequences, suggesting that tight binding of attenuator to the core is assisted by a long antisense portion. A construct with a 25-nucleotide antisense showed greater than 730-fold activation upon annealing with a 20-nucleotide DNA sense strand oligo, representing the greatest activation observed to date for the TRAP design.  相似文献   

14.
Hammerhead ribozymes targeted against two unrelated RNA substrates have been prepared. For each substrate, four ribozymes, differing in their hybridising arm length and composition (DNA or RNA), have been synthesised and kinetically characterised. The presence of DNA in the hybridising arms had little effect on the overall cleavage rate when the cleavage step was rate determining. Shortening each of the hybridising arms of ribozymes from 10 to 6 nucleotides generally resulted in modest changes in rate constants for cleavage of the same 13mer substrate. In one case the presence of long RNA hybridising arms significantly impeded the cleavage reaction. Cleavage rates displayed first order dependence on hydroxide ion concentration at low pHs. At higher pH, some ribozymes deviated from this first order dependence because of a change in the rate-determining step, possibly due to a requirement for a conformation change in the ribozyme-substrate complex prior to cleavage. Ribozyme cleavage was strongly dependent on temperature in the range 5-45 degrees C, with an activation energy for the reaction of approximately 60 kJ mol-1. The ribozymes displayed biphasic dependence on magnesium ion concentration; evidence of strong apparent binding (Kd approximately 10 mM) as well as a looser interaction was observed for all ribozymes.  相似文献   

15.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

16.
17.
18.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

19.
In recent years major progress has been made in elucidating the mechanism and structure of catalytic RNA molecules, and we are now beginning to understand ribozymes well enough to turn them into useful tools. Work in our laboratory has focused on the development of twin ribozymes for site-specific RNA sequence alteration. To this end, we followed a strategy that relies on the combination of two ribozyme units into one molecule (hence dubbed twin ribozyme). Here, we present reverse-joined hairpin ribozymes that are structurally optimized and which, in addition to cleavage, catalyse efficient RNA ligation. The most efficient variant ligated its appropriate RNA substrate with a single turnover rate constant of 1.1 min(-1) and a final yield of 70%. We combined a reverse-joined hairpin ribozyme with a conventional hairpin ribozyme to create a twin ribozyme that mediates the insertion of four additional nucleotides into a predetermined position of a substrate RNA, and thus mimics, at the RNA level, the repair of a short deletion mutation; 17% of the initial substrate was converted to the insertion product.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号