首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes   总被引:4,自引:1,他引:3  
Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The "gain" represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The "loss" represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.  相似文献   

2.
Annotated, complete DNA sequences are available for 213 mitochondrial genomes from 132 species. These provide an extensive sample of evolutionary adjustment of codon usage and meaning spanning the history of this organelle. Because most known coding changes are mitochondrial, such data bear on the general mechanism of codon reassignment. Coding changes have been attributed variously to loss of codons due to changes in directional mutation affecting the genome GC content (Osawa and Jukes 1988), to pressure to reduce the number of mitochondrial tRNAs to minimize the genome size (Anderson and Kurland 1991), and to the existence of transitional coding mechanisms in which translation is ambiguous (Schultz and Yarus 1994a). We find that a succession of such steps explains existing reassignments well. In particular, (1) Genomic variation in the prevalence of a codon's third-position nucleotide predicts relative mitochondrial codon usage well, though GC content does not. This is because A and T, and G and C, are uncorrelated in mitochondrial genomes. (2) Codons predicted to reach zero usage (disappear) do so more often than expected by chance, and codons that do disappear are disproportionately likely to be reassigned. However, codons predicted to disappear are not significantly more likely to be reassigned. Therefore, low codon frequencies can be related to codon reassignment, but appear to be neither necessary nor sufficient for reassignment. (3) Changes in the genetic code are not more likely to accompany smaller numbers of tRNA genes and are not more frequent in smaller genomes. Thus, mitochondrial codons are not reassigned during demonstrable selection for decreased genome size. Instead, the data suggest that both codon disappearance and codon reassignment depend on at least one other event. This mitochondrial event (leading to reassignment) occurs more frequently when a codon has disappeared, and produces only a small subset of possible reassignments. We suggest that coding ambiguity, the extension of a tRNA's decoding capacity beyond its original set of codons, is the second event. Ambiguity can act alone but often acts in concert with codon disappearance, which promotes codon reassignment. Received: 26 October 2000 / Accepted: 19 January 2001  相似文献   

3.
Summary Yeast mitochondria use UUR as the sole leucine codons. CUN, universal leucine codons, are read as threonine by aberrant threonine tRNA with anticodon sequence (UAG).The reassignment of CUN codons to threonine during yeast mitochondrial evolution could have proceeded by the disappearance of CUN codons from the reading frames of messenger RNA, through mutation mainly to UUR leucine codons as a result of AT pressure. We suggest that this was accompanied by a loss of leucine-accepting ability of tRNA Leu(UAG). This tRNA could have then acquired threonine-accepting activity through the appearance of an additional threonyl-tRNA synthetase. CUN codons that subsequently appeared from mutations of various other codons would have been translated as threonine. This change in the yeast mitochondrial genetic code is likely to have evolved through a series of nondisruptive nucleotide substitutions that produced no widespread replacement of leucine by threonine in proteins as a consequence.  相似文献   

4.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

5.
6.
We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.  相似文献   

7.
Lavner Y  Kotlar D 《Gene》2005,345(1):127-138
We study the interrelations between tRNA gene copy numbers, gene expression levels and measures of codon bias in the human genome. First, we show that isoaccepting tRNA gene copy numbers correlate positively with expression-weighted frequencies of amino acids and codons. Using expression data of more than 14,000 human genes, we show a weak positive correlation between gene expression level and frequency of optimal codons (codons with highest tRNA gene copy number). Interestingly, contrary to non-mammalian eukaryotes, codon bias tends to be high in both highly expressed genes and lowly expressed genes. We suggest that selection may act on codon bias, not only to increase elongation rate by favoring optimal codons in highly expressed genes, but also to reduce elongation rate by favoring non-optimal codons in lowly expressed genes. We also show that the frequency of optimal codons is in positive correlation with estimates of protein biosynthetic cost, and suggest another possible action of selection on codon bias: preference of optimal codons as production cost rises, to reduce the rate of amino acid misincorporation. In the analyses of this work, we introduce a new measure of frequency of optimal codons (FOP'), which is unaffected by amino acid composition and is corrected for background nucleotide content; we also introduce a new method for computing expected codon frequencies, based on the dinucleotide composition of the introns and the non-coding regions surrounding a gene.  相似文献   

8.
Iriarte A  Baraibar JD  Romero H  Musto H 《Gene》2011,473(2):110-118
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.  相似文献   

9.
In Salmonella enterica serovar Typhimurium five of the eight family codon boxes are decoded by a tRNA having the modified nucleoside uridine-5-oxyacetic acid (cmo5U) as a wobble nucleoside present in position 34 of the tRNA. In the proline family codon box, one (tRNAProcmo5UGG) of the three tRNAs that reads the four proline codons has cmo5U34. According to theoretical predictions and several results obtained in vitro, cmo5U34 should base pair with A, G, and U in the third position of the codon but not with C. To analyze the function of cmo5U34 in tRNAProcmo5UGG in vivo, we first identified two genes (cmoA and cmoB) involved in the synthesis of cmo5U34. The null mutation cmoB2 results in tRNA having 5-hydroxyuridine (ho5U34) instead of cmo5U34, whereas the null mutation cmoA1 results in the accumulation of 5-methoxyuridine (mo5U34) and ho5U34 in tRNA. The results suggest that the synthesis of cmo5U34 occurs as follows: U34 -->(?) ho5U -->(CmoB) mo5U -->(CmoA?) cmo5U. We introduced the cmoA1 or the cmoB2 null mutations into a strain that only had tRNAProcmo5UGG and thus lacked the other two proline-specific tRNAs normally present in the cell. From analysis of growth rates of various strains and of the frequency of +1 frameshifting at a CCC-U site we conclude: (1) unexpectedly, tRNAProcmo5UGG is able to read all four proline codons; (2) the presence of ho5U34 instead of cmo5U34 in this tRNA reduces the efficiency with which it reads all four codons; and (3) the fully modified nucleoside is especially important for reading proline codons ending with U or C.  相似文献   

10.
Mitochondrial genomes are clearly marked by a strong tendency towards reductive evolution. This tendency has been facilitated by the transfer of most of the essential genes for mitochondrial propogation and function to the nuclear genome. The most extreme examples of genomic simplification are seen in animal mitochondria, where there also are the greatest tendencies to codon reassignment. The reassignment of codons to amino acids different from those designated in the so called universal code is seen in part as an expression of the reduction of the number of genes used by these genomes to code for tRNA species. The driving force for the reductive evolution of mitochondrial genomes is identified with two population genetic effects which may also be operating on populations of parasites.  相似文献   

11.
Summary The reassignment of codon AUA from isoleucine to methionine during mitochondrial evolution may be explained by the codon reassignment (capture) hypothesis without assuming direct replacement of isoleucine by methionine in mitochondrial proteins. According to this hypothesis, codon AUA would have disappeared from the reading frames of messenger RNA. AUA codons would have mutated mainly to AUU isoleucine codons because of constraints resulting from elimination of tRNA Ile with anticodon *CAU (in which *C is lysidine). Later, tRNA Met (CAU) would have undergone structural changes enabling it to pair with both AUG and AUA. AUA codons, formed by mutations of other codons, including AUG, would have reappeared and would have been translated as methionine.  相似文献   

12.
We previously showed that in mitochondrial tRNA(Lys) with an A8344G mutation responsible for myoclonus epilepsy associated with ragged-red fibers (MERRF), a subgroup of mitochondrial encephalomyopathic diseases, the normally modified wobble base (a 2-thiouridine derivative) remains unmodified. Since wobble base modifications are essential for translational efficiency and accuracy, we used mitochondrial components to estimate the translational activity in vitro of purified tRNA(Lys) carrying the mutation and found no mistranslation of non-cognate codons by the mutant tRNA, but almost complete loss of translational activity for cognate codons. This defective translation was not explained by a decline in aminoacylation or lowered affinity toward elongation factor Tu. However, when direct interaction of the codon with the mutant tRNA(Lys) defective anticodon was examined by ribosomal binding analysis, the wild-type but not the mutant tRNA(Lys) bound to an mRNA- ribosome complex. We therefore concluded that the anticodon base modification defect, which is forced by the pathogenic point mutation, disturbs codon- anticodon pairing in the mutant tRNA(Lys), leading to a severe reduction in mitochondrial translation that eventually could result in the onset of MERRF.  相似文献   

13.
Site-Specific Codon Bias in Bacteria   总被引:1,自引:1,他引:1       下载免费PDF全文
J. M. Smith  N. H. Smith 《Genetics》1996,142(3):1037-1043
Sequences of the gapA and ompA genes from 10 genera of enterobacteria have been analyzed. There is strong bias in codon usage, but different synonymous codons are preferred at different sites in the same gene. Site-specific preference for unfavored codons is not confined to the first 100 codons and is usually manifest between two codons utilizing the same tRNA. Statistical analyses, based on conclusions reached in an accompanying paper, show that the use of an unfavored codon at a given site in different genera is not due to common descent and must therefore be caused either by sequence-specific mutation or sequence-specific selection. Reasons are given for thinking that sequence-specific mutation cannot be responsible. We are unable to explain the preference between synonymous codons ending in C or T, but synonymous choice between A and G at third sites is largely explained by avoidance of AG-G (where the hyphen indicates the boundary between codons). We also observed that the preferred codon for proline in Enterobacter cloacea has changed from CCG to CCA.  相似文献   

14.
Synonymous codons are widely selected for various biological mechanisms in both prokaryotes and eukaryotes. Recent evidence suggests that microRNA (miRNA) function may affect synonymous codon choices near miRNA target sites. To better understand this, we perform genome-wide analysis on synonymous codon usage around miRNA target sites in four plant genomes. We observed a general trend of increased site accessibility around miRNA target sites in plants. Guanine-cytosine (GC)-poor codons are preferred in the flank region of miRNA target sites. Within-genome analyses show significant variation among miRNA targets in species. GC content of the target gene can partly explain the variation of site accessibility among miRNA targets. miRNA targets in GC-rich genes show stronger selection signals than those in GC-poor genes. Gene's codon usage bias and the conservation level of miRNA and its target also have some effects on site accessibility, but the expression level of miRNA or its target and the mechanism of miRNA activity do not contribute to site accessibility differences among miRNA targets. We suggest that synonymous codons near miRNA targets are selected for efficient miRNA binding and proper miRNA function. Our results present a new dimension of natural selection on synonymous codons near miRNA target sites in plants, which will have important implications of coding sequence evolution.  相似文献   

15.
Tetrahymena thermophila and Paramecium tetraurelia are ciliates that reassign TAA and TAG from stop codons to glutamine codons. Because of the lack of full genome sequences, few studies have concentrated on analyzing the effects of codon reassignment in protein evolution. We used the recently sequenced genome of these species to analyze the patterns of amino acid substitution in ciliates that reassign the code. We show that, as expected, the codon reassignment has a large impact on amino acid substitutions in closely related proteins; however, contrary to expectations, these effects also hold for very diverged proteins. Previous studies have used amino acid substitution data to calculate the minimization of the genetic code; our results show that because of the lasting influence of the code in the patterns of substitution, such studies are tautological. These different substitution patterns might affect alignment of ciliate proteins, as alignment programs use scoring matrices based on substitution patterns of organisms that use the standard code. We also show that glutamine is used more frequently in ciliates than in other species, as often as expected based on the presence of the 2 new reassigned codons, indicating that the frequencies of amino acids in proteomes is mostly determined by neutral processes based on their number of codons.  相似文献   

16.
Ribosome profiling data report on the distribution of translating ribosomes, at steady‐state, with codon‐level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate‐reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation.  相似文献   

17.
Genetic code redundancy allows most amino acids to be encoded by multiple codons that are non-randomly distributed along coding sequences. An accepted theory explaining the biological significance of such non-uniform codon selection is that codons are translated at different speeds. Thus, varying codon placement along a message may confer variable rates of polypeptide emergence from the ribosome, which may influence the capacity to fold toward the native state. Previous studies report conflicting results regarding whether certain codons correlate with particular structural or folding properties of the encoded protein. This is partly due to different criteria traditionally utilized for predicting translation speeds of codons, including their usage frequencies and the concentration of tRNA species capable of decoding them, which do not always correlate. Here, we developed a metric to predict organism-specific relative translation rates of codons based on the availability of tRNA decoding mechanisms: Watson-Crick, non-Watson-Crick or both types of interactions. We determine translation rates of messages by pulse-chase analyses in living Escherichia coli cells and show that sequence engineering based on these concepts predictably modulates translation rates in a manner that is superior to codon usage frequency, which occur during the elongation phase, and significantly impacts folding of the encoded polypeptide. Finally, we demonstrate that sequence harmonization based on expression host tRNA pools, designed to mimic ribosome movement of the original organism, can significantly increase the folding of the encoded polypeptide. These results illuminate how genetic code degeneracy may function to specify properties beyond amino acid encoding, including folding.  相似文献   

18.
Characteristic features of tRNA such as the anticodon sequence and modified nucleotides in the anticodon loop are thought to be crucial effectors for promoting or restricting codon reassignment. Our recent findings on basepairing rules between anticodon and codon in various metazoan mitochondria suggest that the complete loss of a codon is not necessarily essential for codon reassignment to take place. We postulate that a possible competition between two tRNAs with cognate anticodon sequences towards the relevant codon to be varied has a potential role in codon reassignment. Our proposition can be viewed as an expanded version of the codon capture theory proposed by Osawa and Jukes (J Mol Evol 28: 271–278, 1989). Received: 28 December 2000 / Accepted: 12 March 2001  相似文献   

19.
Codon reassignment (codon capture) in evolution   总被引:20,自引:3,他引:17  
The genetic code, once thought to be "frozen," shows variations from the universal code. Variations are found in mitochondria, Mycoplasma, and ciliated protozoa. The variations result from reassignment of codons, especially stop codons. The reassignments take place by disappearance of a codon from coding sequences, followed by its reappearance in a new role. Simultaneously, a changed anticodon must appear. We discuss the role of directional mutation pressure in the events, and we also describe the possibility that such events have taken place during early evolution of the genetic code and can occur during its present evolution.  相似文献   

20.
Schultz and Yarus (J. Mol. Biol. 235:1377–1380, 1994) have proposed that reassignment of codons in the genetic code passes through a stage in which the codons are ambiguously translated. In contrast, we state that such ambiguity would be deleterious, and that, to be reassigned, a codon, together with the tRNA that translates the codon, must first disappear from coding sequences, after which a tRNA appears with a mutated anticodon, and this enables the codon to reappear with a changed meaning. In the case of a stop codon, the relevant release factor must change so as not to recognize it.Correspondence to: T.H. Jukes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号