首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connexons and cell adhesion: a romantic phase   总被引:3,自引:1,他引:2  
Recent evidence indicates, that gap junction forming proteins do not only contribute to intercellular communication (Kanno and Saffitz in Cardiovasc Pathol 10:169-177, 2001; Saez et al. in Physiol Rev 83:1359-1400, 2003), ion homeostasis and volume control (Goldberg et al. in J Biol Chem 277:36725-36730, 2002; Saez et al. in Physiol Rev 83:1359-1400, 2003). They also serve biological functions in a mechanical sense, supporting adherent connections between neighbouring cells of epithelial and non-epithelial tissues (Clair et al. in Exp Cell Res 314:1250-1265, 2008; Shaw et al. in Cell 128:547-560, 2007), where they stabilize migratory pathways in the developing central nervous system (Elias et al. in Nature 448:901-907, 2007; Malatesta et al. in Development 127:5253-5263, 2000; Noctor et al. in Nature 409:714-720, 2001; Rakic in Brain Res 33:471-476, 1971; J Comp Neurol 145:61-83 1972; Science 241:170-176, 1988), or mediate polarized movements and directionality of neural crest cells during organogenesis (Kirby and Waldo in Circ Res 77:211-215, 1995; Xu et al. in Development 133:3629-3639, 2006). Since, most data describing adhesive properties of gap junctions delt with connexin 43 (Cx43) (Beardslee et al. in Circ Res 83:629-635, 1998), we will focus our brief review on this isoform.  相似文献   

2.
Lipids as targeting signals: lipid rafts and intracellular trafficking   总被引:8,自引:0,他引:8  
Our view of biological membranes has evolved dramatically over the last few decades. In the bilayer model from Singer & Nicholson (Science 1972;175:720-731), both proteins and lipids freely diffuse within the plane of the membrane. Currently, however, membranes are viewed as a mosaic of different compartments or domains maintained by an active cytoskeleton network (Ritchie et al. Mol Membr Biol 2003; 20:13-18). Due to interactions between membrane components, several types of subdomains can form with different characteristics and functions. Lipids are likely to play an important role in the formation of so-called lipid-enriched microdomains or lipid rafts, adding another order of complexity to the membrane model. Rafts represent a type of domain wherein lipids of specific chemistry may dynamically associate with each other, to form platforms important for membrane protein sorting and construction of signaling complexes (Simons & Toomre. Nat Rev Mol Cell Biol 2000;1:31-39). Currently, there are several hypotheses concerning the nature of rafts (reviewed in (Edidin. Annu Rev Biophys Biomol Struct 2003;32: 257-283; Zurzolo et al. EMBO Rep 2003;4:1117-1121)). The most commonly cited one, proposed by Kai Simons (Simons & Ikonen. Nature 1997;387:569-572; Pralle et al. J Cell Biol 2000;148:997-1008), suggests that rafts are relatively small structures ( approximately 50 nm) enriched in cholesterol and sphingolipids within which associated proteins are likely to be concentrated. Another proposal (Anderson & Jacobson. Science 2002;296:1821-1825) suggests that rafts are constructed of lipid shells. These are small dynamic assemblies wherein 'raft' proteins are preferentially associated with certain types of lipids. These 'shells' are thermodynamically stable mobile entities in the plane of the membrane that are able to target the protein they encase to preexisting rafts/caveolae domains. In this review we summarize the data suggesting a specific role for lipid domains in intracellular trafficking and sorting and present a modification of the raft model that may help explain the observed phenomena.  相似文献   

3.
Template-directed replication is known to obey a parabolic growth law due to product inhibition (Sievers & Von Kiedrowski 1994 Nature 369, 221; Lee et al. 1996 Nature 382, 525; Varga & Szathmáry 1997 Bull. Math. Biol. 59, 1145). We investigate a template-directed replication with a coupled template catalysed lipid aggregate production as a model of a minimal protocell and show analytically that the autocatalytic template-container feedback ensures balanced exponential replication kinetics; both the genes and the container grow exponentially with the same exponent. The parabolic gene replication does not limit the protocellular growth, and a detailed stoichiometric control of the individual protocell components is not necessary to ensure a balanced gene-container growth as conjectured by various authors (Gánti 2004 Chemoton theory). Our analysis also suggests that the exponential growth of most modern biological systems emerges from the inherent spatial quality of the container replication process as we show analytically how the internal gene and metabolic kinetics determine the cell population's generation time and not the growth law (Burdett & Kirkwood 1983 J. Theor. Biol. 103, 11-20; Novak et al. 1998 Biophys. Chem. 72, 185-200; Tyson et al. 2003 Curr. Opin. Cell Biol. 15, 221-231). Previous extensive replication reaction kinetic studies have mainly focused on template replication and have not included a coupling to metabolic container dynamics (Stadler et al. 2000 Bull. Math. Biol. 62, 1061-1086; Stadler & Stadler 2003 Adv. Comp. Syst. 6, 47). The reported results extend these investigations. Finally, the coordinated exponential gene-container growth law stemming from catalysis is an encouraging circumstance for the many experimental groups currently engaged in assembling self-replicating minimal artificial cells (Szostak 2001 et al. Nature 409, 387-390; Pohorille & Deamer 2002 Trends Biotech. 20 123-128; Rasmussen et al. 2004 Science 303, 963-965; Szathma ry 2005 Nature 433, 469-470; Luisi et al. 2006 Naturwissenschaften 93, 1-13).  相似文献   

4.
Horizontal gene transfer in microbial genome evolution   总被引:1,自引:0,他引:1  
Horizontal gene transfer is the collective name for processes that permit the exchange of DNA among organisms of different species. Only recently has it been recognized as a significant contribution to inter-organismal gene exchange. Traditionally, it was thought that microorganisms evolved clonally, passing genes from mother to daughter cells with little or no exchange of DNA among diverse species. Studies of microbial genomes, however, have shown that genomes contain genes that are closely related to a number of different prokaryotes, sometimes to phylogenetically very distantly related ones. (Doolittle et al., 1990, J. Mol. Evol. 31, 383-388; Karlin et al., 1997, J. Bacteriol. 179, 3899-3913; Karlin et al., 1998, Annu. Rev. Genet. 32, 185-225; Lawrence and Ochman, 1998, Proc. Natl. Acad. Sci. USA 95, 9413-9417; Rivera et al., 1998, Proc. Natl. Acad. Sci. USA 95, 6239-6244; Campbell, 2000, Theor. Popul. Biol. 57 71-77; Doolittle, 2000, Sci. Am. 282, 90-95; Ochman and Jones, 2000, Embo. J. 19, 6637-6643; Boucher et al. 2001, Curr. Opin., Microbiol. 4, 285-289; Wang et al., 2001, Mol. Biol. Evol. 18, 792-800). Whereas prokaryotic and eukaryotic evolution was once reconstructed from a single 16S ribosomal RNA (rRNA) gene, the analysis of complete genomes is beginning to yield a different picture of microbial evolution, one that is wrought with the lateral movement of genes across vast phylogenetic distances. (Lane et al., 1988, Methods Enzymol. 167, 138-144; Lake and Rivera, 1996, Proc. Natl. Acad. Sci. USA 91, 2880-2881; Lake et al., 1999, Science 283, 2027-2028).  相似文献   

5.
The Spemann organizer can be subdivided into head- and trunk-inducing tissues along the anteroposterior axis (Mangold, 1933. Naturwiisenschaften 43, 761-766; Spemann, 1931. Wilhelm Roux Arch. Entwicklungsmech. Org. 123, 389-517). Recent studies have suggested that head formation is brought about by repression of both Wnt and BMP signalling (Glinka et al., 1998. Nature 391, 357-362; Glinka et al., 1997. Nature 389, 517-519). Several Wnt inhibitors secreted from the head organizer region have been identified in Xenopus, such as Cerberus (Bouwmeester et al., 1996. Nature 382, 595-601), Frzb-1 (Leyns et al., 1997. Cell 88, 747-756; Lin et al., 1997. Proc. Natl. Acad. Sci. USA 94, 11196-11200), and Dkk-1 (Glinka et al., 1998. Nature 391, 357-362), supporting this two-inhibitor model. To isolate genes expressed in the head organizer, we screened a prechordal plate cDNA library by sequencing and expression pattern, and isolated the Xenopus ortholog of chick crescent encoding a Frizzled-like domain that is related to Wnt-binding regions of the Frizzled-family proteins. Expression of Xenopus crescent was first detected in the Spemann organizer region at the early gastrula stage and later in prechordal plate cells lining the boundary of mesoderm and ectoderm layers and in the anterior endoderm. At tailbud stages, the expression in the endomesoderm region was diminished, while expression in the pronephros became detectable. In animal cap assays, crescent gene was synergistically upregulated by coexpression of Xlim1, Ldb1, and Siamois, but not by Activin treatment.  相似文献   

6.
7.
Tubulin folding cofactor D is a microtubule destabilizing protein   总被引:1,自引:0,他引:1  
A rapid switch between growth and shrinkage at microtubule ends is fundamental for many cellular processes. The main structural components of microtubules, the alphabeta-tubulin heterodimers, are generated through a complex folding process where GTP hydrolysis [Fontalba et al. (1993) J. Cell Sci. 106, 627-632] and a series of molecular chaperones are required [Sternlicht et al. (1993) Proc. Natl. Acad. Sci. USA 90, 9422-9426; Campo et al. (1994) FEBS Lett. 353, 162-166; Lewis et al. (1996) J. Cell Biol. 132, 1-4; Lewis et al. (1997) Trends Cell Biol. 7, 479-484; Tian et al. (1997) J. Cell Biol. 138, 821-823]. Although the participation of the cofactor proteins along the tubulin folding route has been well established in vitro, there is also evidence that these protein cofactors might contribute to diverse microtubule processes in vivo [Schwahn et al. (1998) Nature Genet. 19, 327-332; Hirata et al. (1998) EMBO J. 17, 658-666; Fanarraga et al. (1999) Cell Motil. Cytoskel. 43, 243-254]. Microtubule dynamics, crucial during mitosis, cellular motility and intracellular transport processes, are known to be regulated by at least four known microtubule-destabilizing proteins. OP18/Stathmin and XKCM1 are microtubule catastrophe-inducing factors operating through different mechanisms [Waters and Salmon (1996) Curr. Biol. 6, 361-363; McNally (1999) Curr. Biol. 9, R274-R276]. Here we show that the tubulin folding cofactor D, although it does not co-polymerize with microtubules either in vivo or in vitro, modulates microtubule dynamics by sequestering beta-tubulin from GTP-bound alphabeta-heterodimers.  相似文献   

8.
Böhmer C  Wehner F 《FEBS letters》2001,494(1-2):125-128
The epithelial Na(+) channel (ENaC) is composed of the subunits alpha, beta, and gamma [Canessa et al., Nature 367 (1994) 463-467] and typically exhibits a high affinity to amiloride [Canessa et al., Nature 361 (1993) 467-470]. When expressed in Xenopus oocytes, conflicting results were reported concerning the osmo-sensitivity of the channel [Ji et al., Am. J. Physiol. 275 (1998) C1182-C1190; Hawayda and Subramanyam, J. Gen. Physiol. 112 (1998) 97-111; Rossier, J. Gen. Physiol. 112 (1998) 95-96]. Rat hepatocytes were the first system in which amiloride-sensitive sodium currents in response to hypertonic stress were reported [Wehner et al., J. Gen. Physiol. 105 (1995) 507-535; Wehner et al., Physiologist 40 (1997) A-4]. Moreover, all three ENaC subunits are expressed in these cells [B?hmer et al., Cell. Physiol. Biochem. 10 (2000) 187-194]. Here, we injected specific antisense oligonucleotides directed against alpha-rENaC into single rat hepatocytes in confluent primary culture and found an inhibition of hypertonicity-induced Na(+) currents by 70%. This is the first direct evidence for a role of the ENaC in cell volume regulation.  相似文献   

9.
Commentary to: Kim, AY, Tang, Z, Liu Q et al. Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 2008; 133:475-85.

Commentary to: Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 2008; 37:175-95.  相似文献   

10.
Li SX  Vaccaro JA  Sweasy JB 《Biochemistry》1999,38(15):4800-4808
DNA polymerase beta is a small monomeric polymerase that participates in base excision repair and meiosis [Sobol, R., et al. (1996) Nature 379, 183-186; Plug, A., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1327-1331]. A DNA polymerase beta mutator mutant, F272L, was identified by an in vivo genetic screen [Washington, S., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1321-1326]. Residue 272 is located within the deoxynucleoside triphosphate (dNTP) binding pocket of DNA polymerase beta according to the known DNA polymerase beta crystal structures [Pelletier, H., et al. (1994) Science 264, 1891-1893; Sawaya, M., et al. (1997) Biochemistry 36, 11205-11215]. The F272L mutant produces errors at a frequency 10-fold higher than that of wild type in vivo and in the in vitro HSV-tk gap-filling assay. F272L shows an increase in the frequency of both base substitution mutations and frameshift mutations. Single-enzyme turnover studies of misincorporation by wild type and F272L DNA polymerase beta demonstrate that there is a 4-fold decrease in fidelity of the mutant as compared to that of the wild type enzyme for a G:A mismatch. The decreased fidelity is due primarily to decreased discrimination between the correct and incorrect dNTP during ground-state binding. These results suggest that the phenylalanine 272 residue is critical for maintaining fidelity during the binding of the dNTP.  相似文献   

11.
Following hints from X-ray data (Ostermeier C et al., 1997, Proc Natl Acad Sci USA 94:10547-10553; Yoshikawa S et al., 1998, Science 280: 1723-1729), chemical evidence is presented from four distantly related cytochrome-c oxidases for the existence of a copperB-coordinated His240-Tyr244) cross-link at the O2-activating Heme Fea3-CuB center in the catalytic subunit 1 of the enzyme. The early evolutionary invention of this unusual structure may have prevented damaging *OH-radical release at e(-)-transfer to dioxygen and thus have enabled O2 respiration.  相似文献   

12.
How Wingless and Decapentaplegic regulate cell proliferation in the developing Drosophila limbs and how cell proliferation and limb growth are coordinated are two of the most intriguing questions in developmental biology nowadays. Two recent reports [Johnston LA, Edgar BA. Nature 1998;394:82-84 (Ref. 1) and Neufeld TP, et al. 1998; Cell 93:1183-1193 (Ref. 2)] have shed new light on these questions. The first report [Johnston LA, Edgar BA. Nature 1998;394:82-84 (Ref. 1)] shows how Wingless regulates the cell cycle of a particular group of cells in the late wing discs. A second paper [Neufeld TP, et al. 1998; Cell 93:1183-1193 (Ref. 2)] shows the role of cell cycle regulators in proliferating wing disc cells and the relationship between cell division and limb growth.  相似文献   

13.
14.
15.
Symmetry detection is important for many biological visual systems, including those of mammals, insects and birds. We constructed a symmetry-detection algorithm with two stages: location of the visually salient features of the image, then evaluating the symmetry of these features over a long range, by means of a simple Gaussian filter. The algorithm detects the axis of maximum symmetry for human faces (or any arbitrary image) and calculates the magnitude of the asymmetry. We have evaluated the algorithm on the dataset of Rhodes et al. (1998 Psychonom. Bull. Rev. 5, 659-669) and found that the algorithm is able to discriminate small variations of symmetry created by computer-manipulating the symmetry levels in individual faces, and that the values measured by the algorithm correlate well with human psycho-physical symmetry ratings.  相似文献   

16.
SL1 is a stem-loop RNA sequence from the genome of HIV-1 thought to be the initiation site for the dimerization of the retroviral genomic RNA. The aim of this study is to check the stability in solution of different experimental dimeric structures available in the literature. Two kinds of dimer have been evidenced: an extended duplex looking like a double helix with two internal bulges and a kissing complex in which the monomers with a stem/loop conformation are linked by intermolecular loop-loop interactions. Two divergent experimental structures of the kissing complex from the Lai isolate are reported in the literature, one obtained from NMR (Mujeeb et al., Nature Structural Biology, 1998, Vol. 5, pp. 432-436) and the other one from x-ray crystallography (Ennifar et al., Nature Structural Biology, 2001, Vol. 8, pp. 1064-1068). A crystallographic structure of the Mal isolate was also reported (Ennifar et al., Nature Structure Biology, 2001, Vol. 8, pp. 1064-1068). Concerning the extended duplex, a NMR structure is available for Lai (Girard et al., Journal of Biomolecular Structure and Dynamics, 1999, Vol. 16, pp. 1145-1157) and a crystallographic structure for Mal (Ennifar et al., Structure, 1999, Vol. 7, pp. 1439-1449). Using a molecular dynamics technique, all these experimental structures have been simulated in solution with explicit water and counterions. We show that both extended duplex structures are stable. On the contrary, the crystallographic structures of the Lai and Mal kissing complexes are rapidly destabilized in aqueous environment. Finally, the NMR structure of the Lai loop-loop kissing complex remains globally stable over a 20 ns MD simulation, although large rearrangements occur at the level of the stem/loop junctions that are flexible, as shown from free energy calculations. These results are compared to electrophoresis experiments on dimer formation.  相似文献   

17.
Tyrosylprotein sulfotransferase (TPST), responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96). In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl(2). Increase in the level of total sulfation was observed with increasing statherin concentration. The K(m)value of tyrosylprotein sulfotransferase for statherin was 40 microM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed (35)S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.  相似文献   

18.
In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles.  相似文献   

19.
Human immunodeficiency virus drug therapy and virus load.   总被引:10,自引:3,他引:7       下载免费PDF全文
Analysis of the short-term dynamics of human immunodeficiency virus (HIV) type 1 infection in response to drug therapy has elucidated crucial kinetic properties of viral dynamics in vivo (D. D. Ho et al., Nature 373:123-126, 1995; A. S. Perelson et al., Science 271:1582-1586, 1996; X. Wei et al., Nature 373:117-122, 1995). Here we investigated long-term changes in virus load in patients treated with a combination of lamivudine and zidovudine to identify principal factors responsible for the observed 10- to 100-fold sustained suppression of virus load in vivo. Interestingly, most standard accounts of virus dynamics cannot explain a large sustained reduction without shifting the virus very close to extinction. The effect can be explained by taking into consideration either (i) the immune response against HIV, (ii) the killing of uninfected CD4 cells, or (iii) the differential efficacies of the drugs in different cell populations.  相似文献   

20.
L Powers  B M Kincaid 《Biochemistry》1989,28(10):4461-4468
Differences in the methods of analysis of X-ray absorption data used by Powers et al. [Powers, L., Blumberg, W. E., Chance, B., Barlow, C., Leigh, J., Jr., Smith, J., Yonetani, T., Vik, S., & Peisach, J. (1979) Biochim. Biophys. Acta 547, 520-538; Powers, L., Chance, B., Ching, Y., & Angiolillo, P. (1981) Biophys. J. 34, 465-498] and Scott et al. [Scott, R., Schwartz, J., & Cramer S. (1986) Biochemistry 25, 5546-5555] are clarified. In addition, we compare the X-ray absorption data and results for resting cytochrome c oxidase reported by both groups using the same analysis method and conclude apart from any assumptions that the data are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号