首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Eggs, larval and nymphal periods and fecundity of Pullus mediterraneus were examined under 16 h light : 8 h dark combined with six constant temperatures: 15, 20, 25, 30, 35 and 40°C. Eggs of Saissetia oleae were used as prey. The developmental time at 15, 20, 25, 30 and 35°C was 17.23, 4.5, 2.64, 1.67, 1.28 days for eggs and 98.47, 68.88, 53.94, 28.96, 36.51 days for larval–pupal duration, respectively. At 7°C no eggs hatched, and at 40°C all the stages died after 36 h of maximum exposure except the three last stages. The fecundity of females rearing at different temperatures ranged between 1.7 eggs at 15°C and 601.86 eggs at 30°C. The pre-oviposition period ranged between 23.75 days at 15°C and 3.47 days at 35°C. The consumption of S. oleae eggs by the larvae reached 597.69 eggs during the pre-imaginal development. Females attacked more eggs than males averaging 77.69 ± 22.34 eggs per 4 day period compared with 46.97 ± 10.12 eggs per 4 day period for males.  相似文献   

3.
The developmental time, survival and reproduction of the cotton aphid, Aphis gossypii Glover (Hom., Aphididae), were evaluated on detached cotton leaves at five constant and two alternating temperatures (15, 20, 25, 30, 35, 25/30, and 30/35°C). The developmental periods of the immature stages ranged from 12.0 days at 15°C to 4.5 days at 30°C. A constant temperature of 35°C was lethal to the immature stages of A. gossypii. The lower developmental threshold for the cotton aphid was estimated at 6.2°C and it required 108.9 degree-days for a first instar to become adult. The average longevity of adult females was reduced from 39.7 days at 15°C to 12.6 days at 30/35°C. The average reproduction rate per female was 51.5 at 25/30°C and 20.9 at 30/35°C. Mean generation time of the population ranged from 10.4 days at 30°C to 24.5 days at 15°C. The largest per capita growth rate ( r m = 0.413) occurred at 30°C, the smallest at 15°C ( r m = 0.177). It was evident that temperatures over 30°C prolonged development, increased the mortality of the immature stages, shortened adult longevity, and reduced fecundity. The optimal range of temperature for population growth of A. gossypii on cotton was 25/30–30°C.  相似文献   

4.
A demographic study of the Nile crocodile Crocodylus niloticus at Lake Ngezi, Zimbabwe, revealed that females predominated in all size classes and among embryos. The sex of C. niloticus was shown to be determined by the temperature of egg incubation in constant temperature laboratory experiments. At 31 °C and below only females were produced. The threshold temperature for maleness was between 31 ° and 34 °C, but appeared to vary between clutches. The duration of the incubation period varied with temperature and was 110 days at 28 °C, falling to 85 days at 34 °C. Incubation temperature affected hatchling length, but not mass. Hatchlings from incubation at 34 °C were shorter on average than those from incubation at 28 °C and 31 °C, but by three months had outgrown them. There was no sex-related difference in length in a random sample of 200 two-year-old C. niloticus on a crocodile farm. Mean temperatures in wild nests were consistently lower than 31 °C and therefore the male threshold as determined in the laboratory. Embryonic development was slow and hatching success poor. The shallowest eggs in a nest had higher mean temperatures and more advanced embryos than the deepest eggs. They also experienced daily temperature fluctuations of up to 10 °C during which the maximum occasionally rose to 35 °C. Constant temperature incubation was not a good model of field conditions, but the correlation between nest temperatures and embryonic sex is consistent with temperature-dependent sex determination in the wild.  相似文献   

5.
SUMMARY. 1. Newly-laid eggs of Coenagrion puella (L.) from a pond near Herzogenburg (Lower Austria) were kept at constant water temperatures (range c .3.5°C to c .28°C)in the laboratory. Hatching success varied with temperature; no eggs hatched below 12°C and nearly all hatched at c .l6°C. Hatching time decreased with increasing temperature and the relationship between the two variables within the range 12–28 °C was well described by a power law. The length of the hatching period was less than 12 days. Hatching times estimated from the power-law equations and those obtained in the field experiments were similar. Therefore both the hatching time and the length of the hatching period in the field could be estimated from the laboratory data for the range 12–28°C.
2. The maximum number of instars from egg to imago was 11; the average body length increment (mm) per moult was proportionately constant at c .26% and Dyar's rule was applicable. The interval between moults decreased with increasing temperature up to the seventh instar and the relationship between the two variables within the range 12–28°C was well described by a power law. The moulting interval for instars 8–11 ranged from 23 to 48 days and was relatively independent of temperature. No moulting occurred at temperatures below 12°C.
3. Larval growth was logistic in the laboratory and variations in mean logistic growth rate (range 0–2.5% length day−1) were related to mean temperature with no growth at temperatures <12°C. Larval growth rates in pond experiments were similar to those estimated from laboratory data, and therefore the regression equations obtained from the laboratory experiments are probably applicable to larval growth in the field.
4. Information on the life cycle of C. puella is briefly reviewed and it is concluded that C. puella from the pond near Herzogenburg has an univoltine life cycle.  相似文献   

6.
Incubation of eggs of tuatara, Sphenodon punctatus   总被引:3,自引:0,他引:3  
Eggs of the tuatara, Sphenodon punctatus , were incubated either buried or half buried in vermiculite at constant temperatures of 15, 18, 20, 22 and 25 °C and constant water potentials between —90 and —400 kPa. Many clutches failed completely, possibly because they had been taken from females prior to proper shell development. Failed eggs were significantly smaller than successful eggs. Incubation is unsuccessful at 15 °C. Hatching success is high between 18 and 22 °C but low at 25 °C, but equally successful between 18 and 22°C. Incubation is strongly influenced by temperature, with mean incubation periods of 328 days at 18 °C, 259 days at 20 °C, 169 days at 22 °C and 150 days at 25 °C. Water potential generally has little influence on incubation time at a given temperature. Buried eggs hatch sooner than partially buried eggs at 20 °C but the large range makes significance dubious.
Eggs on the driest substrata at 18 and 20 °C lose water initially but then gain water through the rest of incubation. Eggs in all other conditions gain water throughout incubation, with the rate of i water absorption being maintained or increasing late in incubation. The suggestion that increasing rate of water absorption late in incubation facilitates explosive hatching is not supported. Egg mass at the time of hatching varies from 132 to 398% of initial values, depending on incubation conditions. Final egg mass is not affected significantly by incubation temperature. Hence, rates of absorption increase with temperature.
Water potential has no influence on hatchling size. However, hatchlings from buried eggs generally are significantly larger than those from partially buried eggs.  相似文献   

7.
Abstract The effect of temperature on rate of development and survival of the immature stages of a subtropical population of the black jezebel, Delias nigrina , was studied under laboratory conditions at a range of constant temperatures. Mean developmental times from first-instar larva to adult varied from 29 days at 27°C to 52 days at 19°C; the development threshold temperature and thermal constant were estimated to be 9°C and 494 degree-days, respectively. Larval developmental rates reached physiological maximum at the higher temperatures tested (25−27°C). Pupal development, by contrast, was not affected in the same way as larvae by higher temperature. Survival of the immature stages varied inversely with temperature: survival was highest at 19°C and significantly reduced at 27°C. Mortality at the higher temperature was attributable mainly to final-instar larvae and pupae. These findings indicate that, compared with other tropical pierids that have been studied, D. nigrina has: (i) a comparatively low temperature threshold; (ii) a slow rate of development; and (iii) a poor tolerance to moderately high temperatures. Physiologically, these features are more characteristic of a temperate butterfly than a tropical one. This physiological response appears to be reflected by the temperate nature of the genus as a whole, which may be related to its period of origin and evolution during past climatic events.  相似文献   

8.
J. M. Elliott 《Ecography》1986,9(2):113-116
Gravid females of Capnia bifrons (Newman) from Windermere (English Lake District) were almost completely ovoviviparous, the eggs hatching within 15 min after oviposition in the water. When kept in the laboratory at constant temperatures between 3.8 and 19.8°C, few females survived to lay eggs at temperatures above 12.1°C. The relationship between air temperature (T°C) and the egg incubation period (Y days between fertilisation and oviposition) was given by the regression equation: Y = 316.4 T−0.9996 (r2= 0.957, p < 0.001). This equation successfully predicted egg incubation periods for gravid females kept in cages in the field.
Comparisons with similar studies on four non-ovoviviparous species of Plecoptera showed that egg development was rarely more rapid in C. bifrons . It was also shown that the hypothesis of ovoviviparity being an adaptation to combat low water temperatures could be rejected for C. bifrons from Windermere.  相似文献   

9.
The influence of temperature on life-table parameters, fecundity and survivorship of the predatory ladybird, Stethorus gilvifrons , fed on Tetranychus urticae was determined at seven constant temperatures of 15°C, 20°C, 25°C, 28°C, 30°C, 35°C and 40°C. No development was observed at 40°C, thus being regarded as the threshold for the development of S. gilvifrons . The results indicate a significant decrease in male and female longevity with increasing temperature from 15°C to 35°C. The longest and shortest longevity were 18.40 and 12.75 days for males and 17.40 and 8.80 days for females, respectively. The intrinsic rate of natural increase ( r m ) and the net reproductive rate ( R 0) of S. gilvifrons linearly increased with increasing temperatures from 15°C to 35°C, while the mean generation time ( T ) and doubling time (DT) decreased linearly within this temperature range. The highest values of r m (0.240 females/female/day) and R 0 (59.27 females/female) and the lowest mean generation time (17.01 days) and DT (2.88 days) were recorded at 35°C. The maximum (185.50 eggs) and minimum (25.50 eggs) measurement of total fecundity was also recorded at 35°C and 15°C, respectively. The results indicate that temperature greatly affected fecundity, survivorship and life-table parameters of S. gilvifrons , and that 35°C is a suitable temperature for population growth of this predator.  相似文献   

10.
The effects of temperature on maintenance and termination of embryonic diapause were investigated in Jining (35.4°N, 116.6°E) and Sihong (33.5°N, 118.2°E) strains of the Chinese rice grasshopper, Oxya chinensis Thunberg (Orthoptera: Catantopidae). Eggs of both strains entered diapause when incubated at 30, 25, or 20 °C. Chilling at 8 °C had an evident effect on diapause termination and almost all eggs chilled for 60 days ended diapause development. Chilling of eggs at 8 °C for only 20 days failed to result in any hatching at 20 °C, suggesting that such level of chilling was not enough to induce diapause termination. However, the treatment combining incubation of eggs at 30 °C for varying lengths of time with subsequent incubation to 20 °C had a distinct effect on the completion of diapause of the eggs. The results indicate that there were two temperature optima, that is, low temperature (chilling) and high temperature, for diapause development in this grasshopper species. Incubation of chilled eggs at 20 °C for 5–15 days followed by further incubation at 25 °C reduced termination of diapause significantly compared with the eggs only chilled at 8 °C. Exposure of eggs chilled at 8 °C to a pulse of 25 °C from 1 to 7 days, separated by a 20-day interval at 8 °C, resulted in a decrease in the percentage of successfully hatched eggs as the length of the pulse of 25 °C increased. The results suggest that diapause intensity may be restored at moderately high temperatures. This reversible change in diapause intensity would play an important role in maintaining diapause before winter.  相似文献   

11.
Abstract. 1. In eclosion experiments at constant temperatures (6, 9, 12, 15, 18, 21, and 25 °C), Operophtera brumata (L.) pupae were found to respond nonlinearly to temperature, with 9 °C giving the highest developmental rate.
2. Pupal development rate decreased and mortality increased at the highest and lowest temperatures. No pupae eclosed at 6, 21, or 25 °C.
3. Exposing pupae to periods of cold did not enhance their rate of development consistently, indicating that no pupal diapause occurred. Light did not affect the length of the pupal period significantly.
4. Variation in mean developmental rates across temperatures was modelled both for data in the present study (northern Norway) and for a previously published German study (20° further south). The German population had a longer pupal period at all temperatures than the northern population (mean difference of 88 days). The difference is assumed to be genetically based, and hence an adaption to (and not a consequence of) differences in phenology between the two sites.
5. The diversity of the life cycle of O. brumata is discussed. Timing of eclosion can be explained by the selective forces of predation by birds on the one hand and mortality due to early snowfall on the other.  相似文献   

12.
J. M. Elliott 《Ecography》1988,11(1):55-59
Adults were obtained from three populations of Taeniopteryx nebulosa and four populations of Brachyptera risi ; their eggs were incubated at seven constant temperatures (range 3.8–22.1°C). There were interspecific, but not intraspecific, differences in adult life-span, mean number of eggs laid per female, hatching success and egg incubation periods. The optimum temperature for hatching success and the range over which at least 50% of the eggs hatched were lower for T. nebulosa (6.5°C, 2.7–15.0°C) than for B. risi (9.0°C, 5.1–15.8°C). No eggs hatched at 22.1°C. The relationship between incubation period (d days) and water temperature (T°C) was given by; d = 326.4 T−1.015 for T. nebulosa , d = 824.0 T−0.739 for B. risi . Both equations successfully predicted incubation periods for eggs placed in a stream.
Hatching success and incubation periods were similar to those already published for a Norwegian population of T. nebulosa . The lack of significant intraspecific variation suggests that the genotypes associated with the variables examined in this study have remained remarkably stable in these two species in spite of the geographical isolation of their different populations.  相似文献   

13.
This paper is concerned with the bionomics and demography of Pediculaster fletchmanni Wicht (Acari: Siteroptidae) under controlled conditions (20 ± l, 22 ± 1 and 25 ± 1℃, 70% ± 5% relative humidity and a photoperiod of 16L : 8D hours). Glass Petri dishes inoculated with Trichoderma sp. mycelia were used as substrate and food source. The mean developmental time of the egg and the active larva did not differ significantly at the various constant temperatures, but these periods were significantly different for the quiescent larval stage. The preoviposition period ranged from 2.3 to 2.8 days, the ovipositional period increased with temperature increase, and all females died immediately after oviposition. The development of active larvae was the fastest of all life stages. The developmental threshold ranged between 5.25-14.22℃ the highest value being observed for the quiescent larval development. For immature development required 89.29 degree-days. Values of rm (intrinsic rate of increase) were 0.229, 0.398 and 0.386 for 20, 22 and 25℃ respectively. Finite rates of increase (λ) increased along with increasing temperature from 20-25℃ consequently the population doubling time (D) and mean generation time (T) showed significant differences with increasing temperature.  相似文献   

14.
This study assesses the influence of thermal regime on the development, survival rates and early growth of embryos of sea lamprey Petromyzon marinus incubated at five constant temperatures (7, 11, 15, 19 and 23° C). The time from fertilization to 50% hatching and from hatching to 50% burrowing were inversely related to incubation temperature. All the embryos incubated at 7° C died at very early stages, while those maintained at 11° C did not attain the burrowing stage. Survival from fertilization to hatching was 61, 89, 91 and 89% at 11, 15, 19 and 23° C, decreasing to 58, 70 and 70% from hatching to burrowing at 15, 19 and 23° C, respectively. Larvae reared during the first 3 months of exogenous feeding in a common environment at constant 21° C, revealed maximum survival for an incubation temperature of 15° C (43% of burrowed larvae) decreasing strongly at 19° C (16%) and 23° C (one suvivor among 240 larvae). Body length at the burrowing stage was maximum for embryos incubated at 19° C, but body mass increased in the interval 15–23° C. Mean incubation temperatures experienced by 117 broods during the embryonic development in the source river were estimated in 15·3±2·30° C and 16·7±1·76° C (mean±1 s.d .) for the periods fertilization-to-hatching and hatching-to burrowing, respectively.  相似文献   

15.
The effects of temperature on the development and survival of Shijimiaeoides divinus barine were examined in the laboratory in 2008. The eggs and larvae were reared at temperatures of 15, 17.5, 20, 25, 30 and 35°C with a long-day photoperiod of 16 h light : 8 h dark (16L : 8D). The highest hatchability of eggs was 88.0% at 20°C, but hatchability at high temperatures of 30 and 35°C was 30 and 0%, respectively. The lowest and highest survival rates from the first to third instar were 18.8% at 15°C and 76.9% at 20°C. Few deaths were observed after the fourth instar. The shortest developmental periods of the eggs and larvae were 4.0 and 15.8 days at 30°C, and the durations of the egg and larval stages increased significantly as the temperature decreased. The developmental zero and thermal constants were 9.6°C and 82.6 degree–days for the egg stage, and 10.7°C and 306.8 degree–days for the larval stage. The developmental period of the natural population of S. divinus barine in Azumino City, Nagano Prefecture was calculated using the developmental zero, thermal constants and Azumino City temperature data.  相似文献   

16.
The thermal environment during development influences many aspects of the phenotype of hatchling reptiles. We hypothesized that temperature should differentially affect early incubation stages, in which differentiation dominates over growth, and late incubation stages, characterized by high growth rates. To test this idea, we incubated eggs of wall lizard ( Podarcis muralis ) under three regimes with the same mean temperature (29 °C), one constant and two variable with opposite sequences: first cold (25 °C) and then hot (32 °C), and vice versa. Hatchlings incubated at high temperature during the initial period had shorter hindlimbs and tails than those incubated under the other two temperature regimes and shorter heads than those incubated initially at low temperature. Thus, temperature experienced by embryos during the early external incubation period produced similar phenotypic responses compared to those reported in previous studies for the same constant temperature applied over the whole incubation period. Because female wall lizards select lower body temperatures during pregnancy, an increase of intrauterine retention would extend the time of exposure of developing embryos to suitable temperatures. Diminution of body temperature during pregnancy is contrary to the expected pattern under the hypothesis that egg retention has evolved to accelerate development, as proposed by the cold-climate model for evolution of viviparity in squamates, and the results of the present study support the alternative hypothesis of developmental optimization as a special case of the broader maternal manipulation view.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 441–447.  相似文献   

17.
The early development, growth and morphological changes of mackerel Scomber scombrus were investigated at different incubation temperatures (8, 10, 13, 15 and 18° C). Details on the early life history are illustrated with special reference to morphological transformations. Culture techniques to rear larval mackerel stages are described using laboratory cultured foods. Artificially fertilized eggs were hatched after 80·6 h at 18·4° C and 256·8 h at 8·7° C. The standard length ( L S) of the individuals at first feeding was 4·71 ± 0·18 mm. Four mortality critical periods and cannibalistic behaviour were identified. A maximum average larval size of 37·5 ± 4·41 mm L S was attained 30 days post-hatch (dph) at 18·4° C. Development and growth were affected significantly by temperature during both endogenous and exogenous feeding periods. Larvae grew more rapidly at high, than at low temperatures. Daily specific growth rate (in mass) ranged from 2·4% at 10·6° C to 16·9% at 18·4° C. Likewise, average growth rate (in length) ranged from 0·05 mm day−1 at 8·4° C to 0·37 mm day−1 at 18·4° C. The allometric relationship of L S, with several body measurements was not affected by temperature. Comparison with larvae collected in the Bay of Biscay did not show any significant difference in the dry mass and L S relationship; conversely, the growth rate in length differed significantly between both laboratory and field conditions. The trends observed in the laboratory are described in relation to some aspects of the year-class strength regulation.  相似文献   

18.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

19.
Eggs of Heterobranchus longifilis Val. 1840 were artificially fertilized and incubated at a range of temperatures (20, 23, 25, 27, 29 and 32°C). The time from fertilization to hatching decreased with increasing temperature. No eggs survived to hatch at 20 and 32°C incubation temperatures, while at 23 and 29°C hatching was only minimal. Optimum hatching was obtained at 25 and 27°C, which corresponds to the ambient temperature range during the breeding season. Larvae of H. longifilis were reared for 11 days post-hatching at 20, 25, 27, 29 and 32°C. Growth increased with temperature (P < 0.05), whereas survival depicted an inverse relationship. Growth was minimal at 20°C and larvae rarely survived to the end of the experiment. Optimum temperature for the primary nursing of H. longifilis larvae was within the 25–27°C temperature range.  相似文献   

20.
Thermal dependence of embryonic growth and development in brown trout   总被引:4,自引:1,他引:3  
Fertilized eggs from a brown trout Salmo trutta population in northern Spain were incubated in the laboratory at 4, 6, 8, 10, 12, 14, 16 and 18° C. Developmental stage and embryo size were monitored by taking samples at regular intervals. Survival was maximal at 8 and 10° C and decreased at higher and lower temperatures. Despite starting development, no embryo hatched at 16 and 18° C, which suggests an upper thermal limit for development between 14 and 16° C. Time required to reach a given ontogenetic stage decreased with increasing temperature. Embryos incubated at lower temperatures were larger at 50% hatching, and these differences persisted throughout the subsequent embryonic period until the start of exogenous feeding. A comparison with previously published data indicates low interpopulation variability in thermal sensitivity of embryonic development, even in consideration of the great latitudinal range of the studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号