首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim J  Keys JR  Eckhart AD 《Cellular signalling》2006,18(10):1695-1701
Many G protein-coupled receptors can couple to multiple G proteins to convey their intracellular signaling cascades. The receptors for lysophosphatidic acid (LPA) possess this ability. LPA receptors are important mediators of a wide variety of biological actions including cell migration, proliferation and survival which are processes that can all have a considerable impact on vascular smooth muscle (VSM) and blood vessels. To date, confirmation of G proteins involved has mostly relied on the inhibition of Gi-mediated signaling via pertussis toxin (PTx). We were interested in the specific involvement of LPA-Gq-mediated signaling therefore we isolated aorta VSM cells (VSMCs) from transgenic mice that express a peptide inhibitor of Gq, GqI, exclusively in VSM. We detected both LPA1 and LPA2 receptor expression in mouse VSM whereas LPA1 and LPA3 were expressed in rat VSM. SM22-GqI did not alter LPA-induced migration but it was sufficient to attenuate LPA-induced proliferation. GqI expression also attenuated LPA-induced ERK1/2 and Akt activation by 40-50%. To test the feasibility of this peptide as a potential therapeutic agent, we also generated adenovirus encoding the GqI. Transient expression of GqI was capable of inhibiting both LPA-induced migration and proliferation of VSMCs isolated from rat and mouse. Furthermore, ERK activation in response to LPA was also attenuated in VSMCs with Adv-GqI. Therefore, LPA receptors couple to Gq in VSMC and mediate migration and proliferation which may be mediated through activation of ERK1/2 and Akt. Our data also suggest that both chronic and transient expression of the GqI peptide is an effective strategy to lower Gq-mediated LPA signaling and may be a successful therapeutic strategy to combat diseases with enhanced VSM growth such as occurs following angioplasty or stent implantation.  相似文献   

2.
G protein-coupled inwardly rectifying K+ (GIRK) channels can be activated or inhibited by distinct classes of receptor (G(alpha)i/o- and G(alpha)q-coupled), providing dynamic regulation of cellular excitability. Receptor-mediated activation involves direct effects of G(beta)gamma subunits on GIRK channels, but mechanisms involved in GIRK channel inhibition have not been fully elucidated. An HEK293 cell line that stably expresses GIRK1/4 channels was used to test G protein mechanisms that mediate GIRK channel inhibition. In cells transiently or stably cotransfected with 5-HT1A (G(alpha)i/o-coupled) and TRH-R1 (G(alpha)q-coupled) receptors, 5-HT (5-hydroxytryptamine; serotonin) enhanced GIRK channel currents, whereas thyrotropin-releasing hormone (TRH) inhibited both basal and 5-HT-activated GIRK channel currents. Inhibition of GIRK channel currents by TRH primarily involved signaling by G(alpha)q family subunits, rather than G(beta)gamma dimers: GIRK channel current inhibition was diminished by Pasteurella multocida toxin, mimicked by constitutively active members of the G(alpha)q family, and reduced by minigene constructs that disrupt G(alpha)q signaling, but was completely preserved in cells expressing constructs that interfere with signaling by G(beta)gamma subunits. Inhibition of GIRK channel currents by TRH and constitutively active G(alpha)q was reduced by, an inhibitor of phospholipase C (PLC). Moreover, TRH- R1-mediated GIRK channel inhibition was diminished by minigene constructs that reduce membrane levels of the PLC substrate phosphatidylinositol bisphosphate, further implicating PLC. However, we found no evidence for involvement of protein kinase C, inositol trisphosphate, or intracellular calcium. Although these downstream signaling intermediaries did not contribute to receptor-mediated GIRK channel inhibition, bath application of TRH decreased GIRK channel activity in cell-attached patches. Together, these data indicate that receptor-mediated inhibition of GIRK channels involves PLC activation by G(alpha) subunits of the G(alpha)q family and suggest that inhibition may be communicated at a distance to GIRK channels via unbinding and diffusion of phosphatidylinositol bisphosphate away from the channel.  相似文献   

3.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

4.
Agonist-dependent activation of G protein-coupled receptors induces diversified receptor cellular and signaling properties. Norepinephrine (NE) and epinephrine (Epi) are two endogenous ligands that activate adrenoceptor (AR) signals in a variety of physiological stress responses in animals. Here we use cardiomyocyte contraction rate response to analyze the endogenous beta(2)AR signaling induced by Epi or NE in cardiac tissue. The Epi-activated beta(2)AR induced a rapid contraction rate increase that peaked at 4 min after stimulation. In contrast, the NE-activated beta(2)AR induced a much slower contraction rate increase that peaked at 10 min after stimulation. Whereas both drugs activated beta(2)AR coupling to G(s) proteins, only Epi-activated receptors were capable of coupling to G(i) proteins. Subsequent studies showed that the Epi-activated beta(2)AR underwent a rapid phosphorylation by G protein-coupled receptor kinase 2 (GRK2) and subsequent dephosphorylation on serine residues 355 and 356, which was critical for sufficient receptor recycling and G(i) coupling. In contrast, the NE-activated beta(2)ARs underwent slow GRK2 phosphorylation, receptor internalization and recycling, and failed to couple to G(i). Moreover, inhibiting beta(2)AR phosphorylation by betaARK C terminus or dephosphorylation by okadaic acid prevented sufficient recycling and G(i) coupling. Together, our data revealed that distinct temporal phosphorylation of beta(2)AR on serine 355 and 356 by GRK2 plays a critical role for dictating receptor cellular events and signaling properties induced by Epi or NE in cardiomyocytes. This study not only helps us understand the endogenous agonist-dependent beta(2)AR signaling in animal heart but also offers an example of how G protein-coupled receptor signaling may be finely regulated by GRK in physiological settings.  相似文献   

5.
6.
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor’s structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.  相似文献   

7.
G protein-coupled receptor kinase 2 (GRK2) is a serine/theorinine kinase that phosphorylates and desensitizes agonist-bound G protein-coupled receptors. GRK2 is increased in expression and activity in lymphocytes and vascular smooth muscle (VSM) in human hypertension and animal models of the disease. Inhibition of GRK2 using the carboxyl-terminal portion of the protein (GRK2ct) has been an effective tool to restore compromised beta-adrenergic receptor (AR) function in heart failure and improve outcome. A well-characterized dysfunction in hypertension is attenuation of betaAR-mediated vasodilation. Therefore, we tested the role of inhibition of GRK2 using GRK2ct or VSM-selective GRK2 gene ablation in a renal artery stenosis model of elevated blood pressure (BP) [the two-kidney, one-clip (2K1C) model]. Use of the 2K1C model resulted in a 30% increase in conscious BP, a threefold increase in plasma norepinephrine levels, and a 50% increase in VSM GRK2 mRNA levels. BP remained increased despite VSM-specific GRK2 inhibition by either GRK2 knockout (GRK2KO) or peptide inhibition (GRK2ct). Although betaAR-mediated dilation in vivo and in situ was enhanced, alpha(1)AR-mediated vasoconstriction was also increased. Further pharmacological experiments using alpha(1)AR antagonists revealed that GRK2 inhibition of expression (GRK2KO) or activity (GRK2ct) enhanced alpha(1D)AR vasoconstriction. This is the first study to suggest that VSM alpha(1D)ARs are a GRK2 substrate in vivo.  相似文献   

8.
Classically, G protein-coupled receptors (GPCRs) relay signals by directly activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Increasing evidence indicates that GPCRs may also signal through G protein-independent pathways. JAK/STATs, Src-family tyrosine kinases, GRKs/beta-arrestins, and PDZ domain-containing proteins have been suggested to directly relay signals from GPCRs independent of G proteins. In addition, our laboratory recently reported that the beta(2) adrenergic receptor (beta(2)AR) could switch from G protein-coupled to G protein-independent ERK (extracellular signal-regulated kinase) activation in an agonist dosage-dependent manner. This finding provides a novel mechanism for G protein-independent GPCR signaling. This review focuses on recent progress in understanding the mechanisms by which G protein-independent GPCR signaling occurs.  相似文献   

9.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

10.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

11.
G protein-coupled receptor signaling is dynamically regulated by multiple feedback mechanisms, which rapidly attenuate signals elicited by ligand stimulation, causing desensitization. The individual contributions of these mechanisms, however, are poorly understood. Here, we use an improved fluorescent biosensor for cAMP to measure second messenger dynamics stimulated by endogenous beta(2)-adrenergic receptor (beta(2)AR) in living cells. beta(2)AR stimulation with isoproterenol results in a transient pulse of cAMP, reaching a maximal concentration of approximately 10 microm and persisting for less than 5 min. We investigated the contributions of cAMP-dependent kinase, G protein-coupled receptor kinases, and beta-arrestin to the regulation of beta(2)AR signal kinetics by using small molecule inhibitors, small interfering RNAs, and mouse embryonic fibroblasts. We found that the cAMP response is restricted in duration by two distinct mechanisms in HEK-293 cells: G protein-coupled receptor kinase (GRK6)-mediated receptor phosphorylation leading to beta-arrestin mediated receptor inactivation and cAMP-dependent kinase-mediated induction of cAMP metabolism by phosphodiesterases. A mathematical model of beta(2)AR signal kinetics, fit to these data, revealed that direct receptor inactivation by cAMP-dependent kinase is insignificant but that GRK6/beta-arrestin-mediated inactivation is rapid and profound, occurring with a half-time of 70 s. This quantitative system analysis represents an important advance toward quantifying mechanisms contributing to the physiological regulation of receptor signaling.  相似文献   

12.
New DC  Wu K  Kwok AW  Wong YH 《The FEBS journal》2007,274(23):6025-6036
Akt (also known as protein kinase B) plays an integral role in many intracellular signaling pathways activated by a diverse array of extracellular signals that target several different classes of membrane-bound receptors. Akt plays a particularly prominent part in signaling networks that result in the modulation of cellular proliferation, apoptosis and survival. Thus, the overexpression of Akt subtypes has been measured in a number of cancer types, and dominant-negative forms of Akt can trigger apoptosis and reduce the survival of cancer cells. G protein-coupled receptors act as cell-surface detectors for a diverse spectrum of biological signals and are able to activate or inhibit Akt via several direct and indirect means. In this review, we shall document how G protein-coupled receptors are able to control Akt activity and examine the resulting biochemical and physiological changes, with particular emphasis on cellular proliferation, apoptosis and survival.  相似文献   

13.
G protein-coupled kinase 2 (GRK2) has a key role in regulating signaling activities of a variety of G protein-coupled receptors (GPCRs). Several recent studies have directly implicated GRK2 phosphorylation in desensitization of GPCRs. In addition, binding by G(betagamma) or phosphorylation by PKC or c-Src [corrected] has been shown to activate or enhance GRK2 activity, respectively. Conversely, the calcium binding protein calmodulin or the serine/threonine kinase ERK has been implicated in inhibiting GRK2 activity. However, with the exception of a recent report indicating that activation of beta2-adrenergic receptor results in the ubiquitination and rapid degradation of GRK2, very little is known about cellular mechanisms that alter the protein levels of GRK2 [corrected]. Here, we report a novel serendipitous observation regarding alteration of GRK2 [corrected] protein levels. Exposure of CHO cells stably expressing the m1 muscarinic acetylcholine receptor (mAChR) to transient hypoxia caused near ablation of the GRK2 protein. In contrast, GRK2 protein levels remained unchanged in the parental CHO cells or in CHO cells stably expressing the m2 mAChR when exposed to transient hypoxia. The present study reports a novel observation that is unveiled by transient hypoxia in which GRK2 protein levels are altered by cellular mechanisms involving the m1 mAChR.  相似文献   

14.
More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.  相似文献   

15.
16.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   

17.
18.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

19.
The c-Jun N-terminal kinase (JNK)/stress activated protein kinase is preferentially activated by stress stimuli. Growth factors, particularly ligands for G protein-coupled receptors, usually induce only modest JNK activation, although they may trigger marked activation of the related extracellular signal-regulated kinase. In the present study, we demonstrated that homozygous disruption of glycogen synthase kinase 3beta (GSK-3beta) dramatically sensitized mouse embryonic fibroblasts (MEFs) to JNK activation induced by lysophosphatidic acid (LPA) and sphingosine-1-phosphate, two prototype ligands for G protein-coupled receptors. To a lesser degree, a lack of GSK-3beta also potentiated JNK activation in response to epidermal growth factor. In contrast, the absence of GSK-3beta decreased UV light-induced JNK activation. The increased JNK activation induced by LPA in GSK-3beta null MEFs was insufficient to trigger apoptotic cell death or growth inhibition. Instead, the increased JNK activation observed in GSK-3beta-/- MEFs was associated with an increased proliferative response to LPA, which was reduced by the inhibition of JNK. Ectopic expression of GSK-3beta in GSK-3beta-negative MEFs restrained LPA-triggered JNK phosphorylation and induced a concomitant decrease in the mitogenic response to LPA compatible with GSK-3beta through the inhibition of JNK activation, thus limiting LPA-induced cell proliferation. Mutation analysis indicated that GSK-3beta kinase activity was required for GSK-3beta to optimally inhibit LPA-stimulated JNK activation. Thus GSK-3beta serves as a physiological switch to specifically repress JNK activation in response to LPA, sphingosine-1-phosphate, or the epidermal growth factor. These results reveal a novel role for GSK-3beta in signal transduction and cellular responses to growth factors.  相似文献   

20.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号