首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of diazepam on potassium contractures, contraction threshold, and resting tension have been examined in rat soleus muscle fibres. Two actions of the drug were defined that could not be attributed to changes in the resting membrane potential or depolarization in high potassium solutions. The major effect was an increase in the amplitude of submaximal tension during either twitches or potassium contractures and an increase in resting tension. At 400 microM diazepam, there was (a) a fourfold increase in 40 mM potassium contracture tension, (b) a negative shift of 8 mV in the membrane potential for half maximum tension estimated from the best fit of a Boltzmann-type equation to average potassium contracture data, (c) a negative shift of 8 mV in the threshold for contraction measured under voltage clamp conditions, and (d) a contracture of variable amplitude to a level that was occasionally equivalent to maximum tetanic tension. These potentiating actions of diazepam depended on drug concentration within the range of 100-800 microM. In contrast, the second effect of diazepam, depression of maximum tension by 10-15%, was independent of drug concentration between 100 and 400 microM. The results support the idea that diazepam produces an increase in resting myoplasmic calcium concentrations.  相似文献   

2.
Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (greater than 2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2-90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.  相似文献   

3.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

4.
Contracture of Slow Striated Muscle during Calcium Deprivation   总被引:1,自引:1,他引:0       下载免费PDF全文
When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle.  相似文献   

5.
Denervated amphibian muscle does not show the prolongation of action potential found in mammalian denervated muscle. It was, therefore, predicted that denervated amphibian muscle would not show prolongation of the mechanical twitch. The sartorius muscles in one leg of toads--Xenopus borealis--were denervated for 140-268 days. Isometric twitch time to peak, time to half relaxation and twitch/tetanus ratio were not changed following denervation, confirming our prediction. Twitch tension decreased to 68% and tetanic tension decreased to 75% of control values. The maximum velocity of unloaded shortening (muscle length/s) was also unchanged.  相似文献   

6.
Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca.  相似文献   

7.
The influences of octanoic, decanoic, and hexadencanoic acid were tested on the contracture capability of isolated skeletal muscle of frogs and rats. 1. 100 mM octanoic or 10mM decanoic acid induce contractures in skeletal mucles after 20-30 min of exposure. 2. The time of exposure necessary for induction of contractures is shortened by an increase of bath temperature, electrical stimulation or KCl-depolarization of muscles. 3. Simultaneous addition of fatty acid and caffeine (10 mM) effects a depression and a delay of the caffeine contracture. The contractures evoked by 5 mM caffeine are inhibited by lower concentrations of fatty acids (1 mM octaonoic acid, 0,1 mM hexadecanoic acid). 4. After the complete development of a caffeine (or fatty acid) contracture the muscle is not able to develop an identical contracture by a second application of the same drug, even after intermediate treatment during one or two hours in Ringer solution. If the contracture is interrupted one minute after the caffeine application by changing the solution, the tension returns quickly to the resting level. A subsequent addition of caffeine (10 mM) after about 10 minutes effects an identical contracture. Thus the effect of fatty acids on caffeine contracture may be studied on the same muscle which served as its own control. 5. As mechanisms involved in the development of fatty acid contractures and in the inhibition of caffeine contractures, interactions of free fatty acids and lipids of biological membranes are disucssed. Especially, there may be changes of the calcium affinity of cellular membranes.  相似文献   

8.
Experimental material obtained on mouse extensor digitorum longus was presented concerning the dynamics of changes in the membrane potential (MP) of muscle fibres after chronic denervation (1-12 days), the effect of ouabain and increase of extracellular potassium on MP of normal and denervated muscles, changes of input resistance and volumes of muscle fibres after denervation.  相似文献   

9.
The role of calcium in excitation-contraction coupling of lobster muscle   总被引:2,自引:1,他引:1  
Potassium contractures were induced in lobster muscle bundles under conditions which produced varying KCl fluxes into the fibers. The presence or absence of chloride fluxes during depolarization by high concentrations of potassium, had no effect on the tensions developed. The curve relating tension to the membrane potential had a typical sigmoid shape with an apparent "threshold" for tension at -60 mv. Soaking the muscles in low (0.1 mM) calcium salines for 30 min completely eliminated the potassium contractures but the caffeine contractures were only slightly reduced under these conditions. The potassium contracture could be completely restored in less than 2 min by return of the calcium ions to the saline. Evidence is presented for independent, superficial, and deep calcium sites; the superficial sites appear to be involved in the coupling mechanisms associated with potassium contractures. These sites are highly selective for Ca++, and attempts to substitute either Cd++, Co++, Mg++, Ba++, or Sr++ for Ca++ were unsuccessful. However, K+ appeared to compete with Ca++ for these sites, and the evoked tension could be reduced by prestimulation of the muscle fibers with high K+ salines. The results of studies on the influx of 45Ca during potassium contractures were compatible with the view of muscle activation by the entry of extracellular calcium.  相似文献   

10.
The effect of postganglionic denervation on the incidence of nexal contacts in the smooth muscle of the rat vas deferens was investigated. The chronically denervated tissue exhibited twice as many nexuses as control. This increase in the incidence of cell contacts may contribute to the supersensitivity and/or the increase in maximum response of the denervated vas deferens. The effects of denervation, decentralization, and pretreatment with reserpine on the concentration of adenosine triphosphate (ATP) in vasa deferentia of rats and guinea pigs were also investigated. One day after denervation there was a substantial decrease in the endogenous norepinephrine and ATP concentrations. The norepinephrine concentration remained low (less than 10% of control) throughout subsequent days (up to 14 days) whereas the ATP concentration, after the first postoperative day, rose significantly. The rise in ATP concentration was temporally correlated with the development of postjunctional supersensitivity. Decentralization and pretreatment with reserpine both resulted in a significant increase in ATP concentration which preceded by 2 to 3 days a significant increase in sensitivity of the vas deferens. It appears that a change in the tissue concentration of ATP may be one of the initial events that occurs following interruption of the neural contact to the smooth muscle of the vas deferens.  相似文献   

11.
Effects of External Calcium Deprivation on Single Muscle Fibers   总被引:6,自引:2,他引:4  
Deprivation of external calcium causes sudden potentiation of the twitch response of single muscle fibers. The potentiation was 64 ± 8%. Potentiation is simultaneous with membrane depolarization occurring after Ca++ removal. This depolarization amounted to 9 ± 2 mv. Ca++ removal also alters the action potential. 3 min after calcium withdrawal, action potential amplitude fell by 36 ± 3 mv; maximum rates of rise and fall of the spike decreased by 55 ± 5 and 63 ± 5% respectively. Changes in shape of the A. P. differ from those seen with other potentiators of the twitch response, such as Zn++. After short exposure to calcium-free media, potassium-induced contractures show potentiation of peak tension. The S-shaped curve relating potassium contracture tension to log [K]o shifts to the left after such treatment. Calcium deprivation also increased the rate of relaxation of the contractures. This effect depends on the duration of calcium deprivation, and is probably related to the effect of calcium lack on the membrane. The change in relaxation occurred immediately after calcium deprivation, and was reversed by sudden readmission of calcium. Relaxation of twitch and tetanus responses also were affected by Ca lack, but not as rapidly as potassium contractures. The results suggest that external calcium is not directly involved in the process responsible for tension development, supporting the view that this process is mediated by translocation of intracellular calcium. The relaxation process, however, appears to be rapidly affected by deprivation of external calcium.  相似文献   

12.
We investigated the effects of cannabinoids on acetylcholine (ACh) or choline contractures in slow skeletal muscle fibers from Rana pipiens. Bundles of cruralis muscle fibers were incubated with the cannabinoid receptor 1 (CB1) agonist, arachidonylcyclopropylamide (ACPA), which diminished the maximum isometric tension by 10 % and the total tension by 5 % of the ACh contracture, and 40 and 22 % of the choline contracture, respectively. Preincubation with the CB1 antagonist, AM281, or with pertussis toxin (PTX) completely blocked the effect of ACPA on the ACh contracture. On the other hand, the decrease in choline contracture by ACPA was only partially blocked by AM281 (~16 % decrease), PTX (20 %), or by dantrolene (~46 %). Our results show that ACPA modulates ACh and choline contractures, and suggest that this effect involves the participation of CB1, the ACh receptor, and ?RyR in ACh contractures. For choline contractures, ACPA may also be acting through cannabinoid receptor-independent mechanisms.  相似文献   

13.
A functional index of neural adaptability is the capacity of motoneurons to extend and establish supernumerary connections with neighboring denervated muscle fibers. The purpose of this study was to guage this response in rat plantaris muscles subjected to increased levels of activity resulting from the surgical removal of the synergistic gastrocnemius and soleus muscles. Thirty-seven days of overload increased plantaris absolute (69%) and relative (82%) weight, whole muscle (35%) and individual fiber (37%) mean cross-sectional area, half-relaxation time (1/2RT; 25%), and maximum tetanic tension (P0; 21%). In a separate group of animals that had undergone 30 days of overload, three-quarters of the plantaris muscle fibers were denervated by sectioning radicular nerve L4. At 7 days postlesion, contractile responses were obtained from sprouting motor units remaining in radicular nerve L5, and the results compared to a nonoverloaded group that had undergone this same procedure. Twitch time to peak tension and 1/2RT were prolonged in normal partially denervated (PD) and overloaded partially denervated (OPD) muscles, and this response was significantly greater in the overloaded muscles. Both PD and OPD muscles increased twitch tension (38%) and peak tension developed at 25 Hz (34%) to a similar extent, during recovery from partial denervation. These increases, attributable to sprouting of L5 motor axon collaterals, were matched in PD muscles with a corresponding increase in P0, a response which did not occur in OPD muscles. Additionally, a more extensive decrease in P0 occurred as a result of partial denervation in OPD muscles compared with whole muscle P0 of nondenervated muscle (L4 plus L5 stimulation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In frog twitch muscle fibres, Na-octanoate (NaC8) shifted the relation between potassium induced tension and membrane potential to the right. The present study has been carried out to investigate the effect of this fatty acid on frog tonic fibres. Potassium contractures measured on bundles of 30-40 fibres of ileofibularis muscles were less decreased by NaC8 (2.5-10 mmol/l) than those of twitch fibre bundles. In denervated muscles the sensitivity to NaC8 was increased, probably due to the development of sodium channels in the membranes. Experiments with mixed fibre bundles also showed a lower influence of NaC8 on potassium contracture of tonic fibres. On the other hand, tonic fibres showed a lower threshold of the potassium induced tension as well as a lower K+ concentration for maximal activation. This lower threshold was further lowered by NaC8, corresponding to a shift of the relation between potassium concentration and tension to the left. The membrane resting potentials were -58 +/- 9 mV in tonic fibres and -83 +/- 5 mV in twitch fibres. Five mmol/l NaC8 only induced depolarization of the membrane of tonic fibres. This depolarization (by about 20 mV) may be responsible for the threshold shift to lower K+ concentration in NaC8-exposed tonic fibres. In addition to the effects of NaC8 on sodium channels, interactions with Ca2+ binding sites are discussed.  相似文献   

15.
Sustained cell proliferation in denervated skeletal muscle of mice   总被引:1,自引:0,他引:1  
Summary Cellular proliferation in skeletal muscle was measured throughout the first 4 weeks after denervation. Twenty four mice had one leg denervated, and 4 groups of 6 of these mice were injected with tritiated thymidine once daily for 7 days, either during the first, second, third or fourth week after denervation. Autoradiographic labelling of muscle and connective tissue nuclei in denervated muscles was compared with innervated muscles from the opposite innervated legs of the same mice. Labelling of connective tissue and muscle (myonuclear and satellite cell) nuclei was significantly higher in denervated muscles, compared with innervated muscles on the unoperated side. There were no significant differences among labelling of nuclei in muscles denervated for 1, 2, 3 or 4 weeks. However, connective tissue labelling after 1 week of denervation was significantly higher than at later times. This study shows that nuclei of muscle and connective tissue cells proliferate and turnover at high levels for at least one month after denervation.  相似文献   

16.
Comparison has been made between innervated and chronically denervated frog sartorius muscle fibers for resting potentials and a number of features of the action potential. Muscles were obtained from force-fed frogs maintained at room temperature for periods up to one year, and were studied with intracellular microelectrodes. Denervated muscles increased in sensitivity to acetylcholine by 100–400-fold. Studies were made in normal Ringer's solution, and in media in which concentrations of K+, Na+, Ca++, and Cl? were altered. The only significant differences noted between the denervated and the innervated fibers were a reduction in the maximum rate of fall of the action potential (ca. 20%) and an increase in the fall time of the active membrane potential (ca. 25%). These differences were present in normal Ringer's solution and remained when the bathing medium was modified. The resting membrane potential of denervated and innervated muscles varied with log [K+]o in exactly the same manner, and followed the theoretical relation proposed by Hodgkin (Proc. Roy. Soc., B, 148: 1–37, ′58), with the term representing the ratio of the sodium to potassium permeabilities assigned a value of 0.01. The results suggest that (a) the resting sodium and potassium permeabilities are reduced proportionately after denervation, since it is known that denervated frog muscle has a smaller potassium permeability, and (b) the mechanism controlling the increase in potassium conductance during the action potential is less available after denervation. Data indicate that the system controlling the sodium permeability is capable of activation to the same extent as in innervated muscles. Muslces which had been allowed to reinnervate did not show the differences presented by the denervated muscles. Innervated and denervated muscles did not show any significant changes in maximum rates of rise or fall of the action potential, nor of the active membrane potential amplitude over a 30 mV range of resting membrane potentials, indicating that the sodium and potassium permeability systems are fully available in frog muscle at membrane potentials larger than ?80 mV.  相似文献   

17.
The effect of lignocaine on tone and contractility of intestinal smooth muscle, and on contractures produced by ACh or TEA, was studied in isolated ileum of the rat. Lignocaine (0.1-100 microM) produced concentration-dependent contractures in the rat ileum. In low concentrations, lignocaine increased the amplitude of spontaneous contractions and contractions produced by transmural stimulation. High concentrations of lignocaine abolished all contractile responses and produced a marked contracture in rat ileum. Lignocaine (10 microM) also reduced the contractures produced by ACh (0.01-10 microM). In contrast, the contractures produced by TEA (0.1-10 mM) were markedly increased by lignocaine. Furthermore, the contracture produced by lignocaine was reduced by lowering the external calcium from 2.5 mM to 1.5 mM. It was concluded that lignocaine in moderate and high concentrations produces a contracture in rat intestinal smooth muscle. Whereas lignocaine reduces the ACh-induced contracture, it increases that produced by TEA in the same preparation. The results further suggest that lignocaine modifies cholinergic responses and affects excitation-contraction coupling in rat intestinal smooth muscle.  相似文献   

18.
Satellite cells (SCs) in normal adult muscle are quiescent. They can enter the mitotic program when stimulated with growth factors such as basic FGF. Short-term denervation stimulates SC to enter the mitotic cycle in vivo, whereas long-term denervation depletes the SC pool. The molecular basis for the neural influence on SCs has not been established. We studied the phenotype and the proliferative capacity of SCs from muscle that had been denervated before being cultured in vitro. The expression of PCNA, myogenin, and muscle (M)-cadherin in SCs of normal and denervated muscle fibers was examined at the single-cell level by immunolabeling in a culture system of isolated rat muscle fibers with attached SCs. Immediately after plating (Day 0), neither PCNA nor myogenin was present on normal muscle fibers, but we detected an average of 0.5 M-cadherin(+) SCs per muscle fiber. The number of these M-cadherin(+) cells (which are negative for PCNA and myogenin) increased over the time course examined. A larger fraction of cells negative for M-cadherin underwent mitosis and expressed PCNA, followed by myogenin. The kinetics of SCs from muscle fibers denervated for 4 days before culturing were similar to those of normal controls. Denervation from 1 to 32 weeks before plating, however, suppressed PCNA and myogenin expression almost completely. The fraction of M-cadherin(+) (PCNA(-)/myogenin(-)) SCs was decreased after 1 week of denervation, increased above normal after denervation for 4 or 8 weeks, and decreased again after denervation for 16 or 32 weeks. We suggest that the M-cadherin(+) cells are nondividing SCs because they co-express neither PCNA or myogenin, whereas the cells positive for PCNA or myogenin (and negative for M-cadherin) have entered the mitotic cycle. SCs from denervated muscle were different from normal controls when denervated for 1 week or longer. The effect of denervation on the phenotypic modulation of SCs includes resistance to recruitment into the mitotic cycle under the conditions studied here and a robust extension of the nonproliferative compartment. These characteristics of SCs deprived of neural influence may account for the failure of denervated muscle to fully regenerate. (J Histochem Cytochem 47:1375-1383, 1999)  相似文献   

19.
In order to determine if the development of β-adrenergic receptors may explain the catecholamine evoked contracture of denervated mammalian skeletal muscle, the binding capacities and dissociation constants of β-adrenergic receptors of innervated and denervated rat skeletal muscle membrane preparations were determined by using [3H] dihydroalprenolol. The dissociation constants of [3H] dihydroalprenolol binding to innervated and denervated muscle microsomal suspensions were similar. The maximal number of binding sites increased from 27 pmol/g protein to 85 pmol/g protein following 25 days denervation. These results suggest that motor nerve may be involved in part, in the regulation of β-adrenergic receptors in skeletal muscle membrane preparations.  相似文献   

20.
The effects of caffeine on the electrical and mechanical activity of the guinea-pig ureter smooth muscle were studied. Under untreated conditions caffeine mainly showed inhibitory action on the ureter, inhibiting the evoked action potentials and phasic contractions as well as potassium contracture. Caffeine was also found to suppress the low-Na contracture of Na-loaded ureter muscle. It is established that Na-loaded tissue is able to generate transient contracture in response to caffeine application at 37 degrees C. These caffeine contractures could be evoked under completely removed [Ca2+]0 and in the presence of high doses of Ca-channel blockers (nifedipine, diltiazem, Mn ions) and could be reversibly blocked by tetracaine, procaine and benzocaine. Caffeine contractures could also be produced by the ureter muscle placed in isotonic K-solution. Cooling significantly potentiated low-Na, potassium and caffeine contractures of the ureter muscle. Filling of the store is totally dependent on the entry of Ca ions from the extracellular Ca2+ store sites which sequester Ca ions entering the cell on either Na-Ca exchange or via voltage operated Ca channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号