首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of sexual dichromatism in tanagers (family Thraupidae) was studied from a phylogenetic perspective using a molecular-based phylogeny. Mapping patterns of sexual dimorphism in plumage onto the phylogeny reveals that changes in female plumage occur more frequently than changes in male plumage. Possible explanations for this pattern include sexual selection acting on female plumage and natural selection for background matching. The results of this study and other recent phylogenetic and comparative studies suggest that factors affecting female plumage are important in shaping patterns of sexual dimorphism.  相似文献   

2.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   

3.
The study of phenotypic evolution in island birds following colonization is a classic topic in island biogeography. However, few studies explicitly test for the role of selection in shaping trait evolution in these taxa. Here, we studied the Azores woodpigeon (Columba palumbus azorica) to investigate differences between island and mainland populations, between females and males, and interactions between geographical origin and sex, by using spectrophotometry to quantify plumage colour and linear measurements to examine external and skeletal morphology. We further tested if selection explains the observed patterns by comparing phenotypic differentiation to genome‐wide neutral differentiation. Our findings are consistent with several predictions of morphological evolution in island birds, namely differences in bill, flight and leg morphology and coloration differences between island and mainland birds. Interestingly, some plumage and morphological traits that differ between females and males respond differently according to geographical origin. Sexual dimorphism in colour saturation is more pronounced in the mainland, but this is driven by selection on female plumage coloration. Differences in flight morphology between females and males are also more pronounced in the mainland, possibly to accommodate contrasting pressures between migration and flight displays. Overall, our results suggest that phenotypic differentiation between mainland and island populations leading to divergent sexual dimorphism patterns can arise from selection acting on both females and males on traits that are likely under the influence of natural and sexual selection.  相似文献   

4.
The estrildid finches (Aves: Passeriformes: Estrildidae) of Africa, Asia, and Australia have been the focus of several recent tests of sexual selection theory. Many estrildids display bright red, orange, or yellow colors in the beak or plumage, which typically are generated by the presence of carotenoid pigments. In this study, we used high-performance liquid chromatography to investigate the carotenoid content of feathers and other colorful tissues in seven species of estrildids. Star finches (Neochmia ruficauda) and diamond firetails (Stagonopleura guttata) circulated two main dietary carotenoids (lutein and zeaxanthin) through the blood and liver and used both to acquire a yellow plumage color. However, five other estrildids (common waxbill, Estrilda astrild; black-rumped waxbill, Estrilda troglodytes; zebra waxbill, Amandava subflava; red avadavat, Amandava amandava; and zebra finch, Taeniopygia guttata) circulated these same dietary carotenoids along with two metabolites (dehydrolutein and anhydrolutein) through the blood and/or liver and used all four as yellow plumage colorants. We subsequently tracked the distribution of these pigments using a published phylogeny of estrildid finches to determine the evolutionary pattern of carotenoid metabolism in these birds. We found that finches from the most ancient tribe of estrildids (Estrildini) possessed the ability to metabolize dietary carotenoids. Although carotenoids from the most ancestral extant estrildid species have yet to be analyzed, we hypothesize (based on their relationships with other songbirds known to have such metabolic capabilities) that these finches inherited from their ancestors the capability to metabolize carotenoids. Interestingly, later in estrildid evolution, certain taxa lost the ability to metabolize dietary carotenoids (e.g., in the Poephilini), suggesting that the occurrence of carotenoid metabolism can be labile and is likely shaped by the relative costs and benefits of color signaling across different species.  相似文献   

5.
Several empirical studies suggest that sexually selected characters, including bird plumage, may evolve rapidly and show high levels of convergence and other forms of homoplasy. However, the processes that might generate such convergence have not been explored theoretically. Furthermore, no studies have rigorously addressed this issue using a robust phylogeny and a large number of signal characters. We scored the appearance of 44 adult male plumage characters that varied across New World orioles (Icterus). We mapped the plumage characters onto a molecular phylogeny based on two mitochondrial genes. Reconstructing the evolution of these characters revealed evidence of convergence or reversal in 42 of the 44 plumage characters. No plumage character states are restricted to any groups of species higher than superspecies in the oriole phylogeny. The high frequency of convergence and reversal is reflected in the low overall retention index (RI = 0.66) and the low overall consistency index (CI = 0.28). We found similar results when we mapped plumage changes onto a total evidence tree. Our findings reveal that plumage patterns and colors are highly labile between species of orioles, but highly conserved within the oriole genus. Furthermore, there are at least two overall plumage types that have convergently evolved repeatedly in the three oriole clades. This overall convergence leads to significant conflict between the molecular and plumage data. It is not clear what evolutionary processes lead to this homoplasy in individual characters or convergence in overall pattern. However, evolutionary constraints such as developmental limitations and genetic correlations between characters are likely to play a role. Our results are consistent with the belief that avian plumage and other sexually selected characters may evolve rapidly and may exhibit high homoplasy. The overall convergence in oriole plumage patterns is an interesting evolutionary phenomenon, but it cautions against heavy reliance on plumage characters for constructing phylogenies.  相似文献   

6.
Bird species in the genus Pitohui are chemically defended by a potent neurotoxic alkaloid in their skin and feathers. The two most toxic pitohui species, the hooded pitohui (Pitohui dichrous) and the variable pitohui (Pitohui kirhocephalus), are sometimes strikingly patterned and, in certain portions of their geographical ranges, both species share a nearly identical colour pattern, whereas in other areas they do not. Müllerian mimicry (the mutual resemblance of two chemically defended prey species) is common in some other animal groups and Pitohui birds have been suggested as one of the most likely cases in birds. Here, we examine pitohui plumage evolution in the context of a well-supported molecular phylogeny and use a maximum likelihood approach to test for convergent evolution in coloration. We show that the 'mimetic' phenotype is ancestral to both species and that the resemblance in most races is better explained by a shared ancestry. One large clade of P. kirhocephalus lost this mimetic phenotype early in their evolution and one race nested deep within this clade appears to have re-evolved this phenotype. These latter findings are consistent with the hypothesis that Müllerian mimicry is driving the evolution for a similar colour pattern between P. dichrous, but only in this one clade of P. kirhocephalus  相似文献   

7.
Although Southeast Asia is a global biodiversity hotspot, the tempo and mode of avian diversification there has not been well studied. We investigated the history of the diversification of an endemic Asian tropical bird, the Black-browed Barbet Megalaima oorti , by reconstructing its intraspecific molecular phylogeny with mitochondrial cytochrome- b gene sequences. Our molecular phylogeny suggests that the five subspecies of this montane barbet comprise four deeply divergent clades with strong geographical associations: M. o. oorti in the Malay Peninsula and Sumatra, M. o. annamensis in Vietnam, M. o. nuchalis in Taiwan and M. o. faber / M. o. sini in Hainan and the southeastern Chinese mainland, respectively. Climate changes from the mid-Pliocene to the Pleistocene may have influenced their diversification through repeated contraction and expansion of Asian tropical forest. Moreover, our data indicate that the Black-browed Barbet complex is not monophyletic: M. asiatica is embedded in our phylogeny as the sister taxon to M. o. annamensis . The present taxonomic treatment has combined evolutionarily distinct taxa into a single paraphyletic species. Based on our molecular data and previously published plumage characters, we suggest a revision of traditional M. oorti into four monophyletic species: M. oorti , M. nuchalis , M. annamensis and M. faber .  相似文献   

8.
We sequenced 2800 bp of mitochondrial DNA from each of 33 species and 2 subspecies (35 taxa) of terns (Sternini), and employed Bayesian methods to derive a phylogeny with good branch support based on posterior probabilities. The resulting tree confirmed many of the generally accepted taxonomic groups, and led us to suggest a revision of the terns that recognizes 12 genera, 11 of which correspond to a distinct clade on the tree or a highly divergent species (1 genus was not represented in the phylogeny). As an example of how the molecular phylogeny reflects similarities in morphology and behavior among the terns, we used the phylogeny to examine the evolution of the breeding (alternate) head plumage patterns among the terns to test the hypothesis that this character is phylogenetically informative. The three basic types of head plumage (white crown, black cap, and black cap with a white blaze on the forehead) were highly conserved within clades, with notable exceptions in two white-crowned species that evolved independently among the black-capped terns. Based on the appearance of the close relatives of these exceptional species, their white crowns appear to be due to the retention of either winter (basic) plumage characteristics or perhaps juvenile characteristics when the birds molt into their breeding plumage. Examination of the evolutionary history of head plumage indicated that the white-crowned species such as the noddies (Anous) and the white tern (Gygis alba) are probably most representative of ancestral terns.  相似文献   

9.
Evolutionary processes in East Asian ninespine sticklebacks (Pungitius spp.), including both extremes of armor morphology in the genus, were demonstrated with mitochondrial DNA control region (CR) phylogeny. Entire CR sequences (830-930 bp long) were determined for three species: the most heavily armored (P. sinensis), the most reduced (P. tymensis), and an intermediate (P. pungitius). The former two species are endemic to East Asia, the latter being circumpolar. Three major lineages (A, B, and C) were revealed, whereas both the phylogenetic trees and the insertion sequence dynamics supported the polyphyly of P. sinensis. Haplotypes of the mainland populations of P. sinensis possessed lineage B, being the sister group of P. tymensis lineage A. Island populations of P. sinensis, however, possessed lineage C, along with all P. pungitius haplotypes. A molecular clock hypothesis was clearly rejected for the CR sequences, significantly slower evolutionary rates being observed in the P. tymensis lineage. The split of mainland P. sinensis and P. tymensis was considered to have preceded that of the lineage C colonization in East Asia. The contrasting morphology is probably attributable to adaptation of P. tymensis to island freshwater environments and an ecological interaction between P. tymensis and lineage C emigrants.  相似文献   

10.
We present the first extensive and integrative analysis of niche evolution based on climatic variables and a dated molecular phylogeny of a heterogeneous avian group of Southeast Asian scimitar babblers of the genus Pomatorhinus. The four main clades of scimitar babblers have species that co-occur in similar areas across southern Asia but some have diverged at different timeframes, with the most recently evolved clade harboring the highest number of species. Ecological niche models and analysis of contributing variables within a phylogenetic framework indicate instances of convergent evolution of members of different clades onto similar ecological parameter space, as well as divergent evolution of members from within clades. Pomatorhinus species from different clades occupying Himalayan foothills show convergence towards similar climatic tolerances, whereas within a clade, allopatric sister-species occurring in the Himalayas have diverged to occupy different climatic parameter spaces. Comparisons of climatic tolerances of Himalayan foothills taxa with species distributed further south in Assam/Burma and Burma/Thailand indicate convergence towards similar parameter spaces in several climatic variables. Niche overlap was observed to be lower among species of the youngest clade (ruficollis) and higher among species of older clades (ferruginosus). Analysis of accumulation of ecological disparity through time indicates rapid divergence within recent time frames. As a result, Himalayan taxa originating at different temporal scales within the four main scimitar babbler clades have differentiated ecologically only in recently diverged taxa. Our study suggests that the repeated orogenic and climatic fluctuations of the Pliocene and Pleistocene within mainland Southeast Asia served as an important ecological speciation driver within scimitar babblers, by providing opportunities for rapid geographic expansion and filling of novel environmental niches.  相似文献   

11.
We investigated sperm cells and spermatophores of four species of Old World freshwater crabs belonging to three different genera of the subfamily Potaminae (family Potamidae). Characters previously believed to be apomorphic for the potamid subfamily Potamiscinae were also found to occur in the Potaminae. To infer the morphological ancestral character state combination of the Potamidae, ancestral character state analysis of four different sperm traits was performed, based on a 16S rDNA phylogeny of the investigated species. Comparing molecular phylogeny and character state distribution, several cases of convergent evolution could be identified. The densely packed, coenospermic spermatophores and the occurrence of a ‘tongue‐and‐groove’ connection between operculum and acrosomal zones are probably apomorphies for the whole Potamidae. The spermatozoa of Socotrapotamon socotrense show several unique characters. We also analysed the evolution of acrosome size. The sperm cells of the Potamidae and their sister‐group Gecarcinucidae only slightly overlap in acrosome size. Within the investigated species, the ‘East Asia’ subclade (subfamily Potamiscinae) developed significantly larger acrosomes than the subfamily Potaminae. Our results suggest that the use of brachyuran acrosome morphology for phylogenetic inference at the family level is strongly affected by small sample size, and by convergent character evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

12.
Crassulaceae is a mid-sized family of angiosperms, most species of which are herbaceous succulents, usually with 5-merous flowers and one or two whorls of stamens. Although previous phylogenetic studies revealed seven major “clades” in Crassulaceae and greatly improved our understanding of the evolutionary history of the family, relationships among major clades are still contentious. In addition, the biogeographic origin and evolution of important morphological characters delimiting infrafamilial taxa have not been subject to formal biogeographic and character evolution analyses based on a well-supported phylogeny backbone. In this study, we used plastomic data of 52 species, representing all major clades revealed in previous studies to reconstruct a robust phylogeny of Crassulaceae, based on which we unraveled the spatiotemporal framework of diversification of the family. We found that the family may originate in southern Africa and then dispersed to the Mediterranean, from there to eastern Asia, Macaronesia, and North America. The crown age of Crassulaceae was dated at ca. 63.93 million years ago, shortly after the Cretaceous–Paleogene (K-Pg) boundary. We also traced the evolution of six important morphological characters previously used to delimit infrafamilial taxa and demonstrated widespread parallel and convergent evolution of both vegetative (life form and phyllotaxis) and floral characters (number of stamen whorls, petals free or fused, and flower merism). Our results provide a robust backbone phylogeny as a foundation for further investigations, and also some important new insights into biogeography and evolution of the family Crassulaceae.  相似文献   

13.
Although phylogenetic reconstruction of ancestral character states is becoming an increasingly common technique for studying evolution, few researchers have assessed the reliability of these reconstructions. Here I test for congruence between a phylogenetic reconstruction and a widely accepted scenario based on independent lines of evidence. I used Livezey's (1991) phylogeny to reconstruct ancestral states of plumage dichromatism in dabbling ducks (Anatini). Character state mapping reconstructs monochromatic ancestors for the genus Anas as well as most of its main clades. This reconstruction differs strongly from the widely accepted scenario of speciation and plumage evolution in the group (e.g., Delacour and Mayr 1945; Sibley 1957). This incongruence may occur because two standard assumptions of character state reconstruction are probably not met in this case. Violating either of these two assumptions would be a source of error sufficient to create misleading reconstructions. The first assumption that probably does not apply to ducks is that terminal taxa, in this case species, are monophyletic. Many of the widespread dichromatic species of ducks may be paraphyletic and ancestral to isolated monochromatic species. Three lines of evidence support this scenario: population-level phylogenies, biogeography, and vestigial plumage patterns. The second assumption that probably does not apply to duck plumage color is that gains and losses of character states are equally likely. Four lines of evidence suggest that dichromatic plumage might be lost more easily than gained: weak female preferences for bright male plumage, biases toward the loss of sexually dichromatic characters, biases toward the loss of complex characters, and repeated loss of dichromatism in other groups of birds. These seven lines of evidence support the accepted scenario that widespread dichromatic species repeatedly budded off isolated monochromatic species. Drift and genetic biases probably caused the easy loss of dichromatism in ducks and other birds during peripatric speciation. In order to recover the accepted scenario using Livezey's tree, losses of dichromatism must be five times more likely than gains. The results of this study caution against the uncritical use of unordered parsimony as the sole criterion for inferring ancestral states. Detailed population-level sampling is needed and altered transformation weighting may be warranted in ducks and in many other groups and character types with similar attributes.  相似文献   

14.
The genus Dichocarpum was established by W. T. Wang and Hsiao in 1964, who divided the genus into 2 sections: Sect. Dichocarpum including 10 species distributed on the mainland of E. Asia, and Sect. Hutchinsonia including 9 species native to Japan. M. Tamura and L. A. Lauener made a revision of the genus in 1968, who divided the genus into 4 sections, three for the species of the mainland of E. Asia, including 3 series and 10 species, and the other for the species of Japan, including 2 subsections, 3 series and 9 species. In the present paper, the genus is divided into 2 sections and 6 series, including 15 species and 3 varieties, and a putative phylogeny of the genus is proposed. The genus may be close to the genus Asteropyrum, and these two genera are rather specialized in Thalictroides (Ranunculaceae), because they have three very similar characters: the petal with a long claw, the stephanocolpate pollen and the chromosome morphology. The genus has 2n=24, 35(36?), which indicates that its basic number is X=6, and the species on the mainland of E. Asia (Sect. Dichocarpum) may well be paleotetraploids, whereas those in Japan (sect. Hutchinsonia) are paleohexaploids. Most of the advanced species are distributed in Japan and the most primitive ones in China and the Himalayas, the distribution pattern seggests that the Japanese members of this genus might have immigrated from China in the Tertiary, and differentiated and evolved there. The putative phylogeny of the genus is shown in Fig. 2 (at series level)  相似文献   

15.
16.
Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles—two snakes and one lizard—in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.  相似文献   

17.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   

18.
Spiny ants (Polyrhachis Smith) are a hyper‐diverse genus of ants distributed throughout the Palaeotropics and the temperate zones of Australia. To investigate the evolution and biogeographic history of the group, we reconstructed their phylogeny and biogeography using molecular data from 209 taxa and seven genes. Our molecular data support the monophyly of Polyrhachis at the generic level and several of the 13 recognized subgenera, but not all are recovered as monophyletic. We found that Campomyrma Wheeler consists of two distinct clades that follow biogeographic affinities, that the boundaries of Hagiomyrma Wheeler are unclear depending on the analysis, that Myrma Billberg might be treated as one or two clades, and that Myrmhopla Forel is not monophyletic, as previously proposed. Our biogeographic ancestral range analyses suggest that the evolution of Polyrhachis originated in South‐East Asia, with an age of the modern crown‐group Polyrhachis of 58 Ma. Spiny ants dispersed out of South‐East Asia to Australia several times, but only once to mainland Africa around 26 Ma.  相似文献   

19.
Abstract Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.  相似文献   

20.
We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that extends from the chin to the cheek. We examine the extent of sexual dimorphism in tail length across the phylogeny and reveal large differences between closely related forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. An ancestral Psittacula form appears to have evolved during the late Miocene-early Pliocene (3.4-9.7MYA), a time when regional geological processes on the Asian continent may have promoted subsequent diversity at the species level, and many forms diverged relatively early on in the evolutionary history of Psittacula (between 2.5 and 7.7MYA). However, others, such as the derbyan and moustached parakeets, diverged as recently as 0.2MYA. Our phylogeny also suggests that the echo parakeet from Mauritius diverged from the Indian ringneck parakeet as opposed to the African ringneck, and may have done so relatively recently. The molecular results indicate support for a southwards radiation from India across the Indian Ocean to Mauritius, where the arrival-date of the echo parakeet appears consistent with the island's volcanic formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号