首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal ionotropic glutamate receptors (iGluRs) function as Ca2 + ion channels during excitatory neurotransmission in nerve cells. Here, a glutamate receptor-like gene (GLR) was identified and characterized from a plant — Echinochloa crus-galli. The GLR gene was designated EcGLR1 with GenBank no: JX518597. It has a 2793 bp open reading frame predicted to encode a 101.7 kDa protein. Sequence alignment showed that EcGLR1 is a GLR homologue. Its expression in response to quinclorac treatment was assessed by real-time PCR in near-isogenic lines of quinclorac-resistant (R) and susceptible (S) biotypes of E. crus-galli. The expression of EcGLR1 in the seedling leaf and root at least increased 5 times in the S plants and 22 times in the R plants after exposure to quinclorac. In the adult plant leaves, roots and stems, its expression increased 11–14 times in the S plants and 23–25 times in the R plants after quinclorac stimulation. In the seed, its expression was 4 times less in the S plants than that in the R plants, but after treatment, the levels all increased by about 24 times in the two biotypes. EcGLR1 expression was 1–4 times greater in the R plants than in that in the S plants, and after treatment by quinclorac, the difference increased to a ratio of 4 to 9. Its expression was higher in all tissues tested of R biotypes than in that of S plants before or after quinclorac treatment. The results of this study provide basic information for the further research of function of the EcGLR1 in resistance to quinclorac in E. crus-galli.  相似文献   

2.
Phosphotyrosine interaction domain containing 1 (PID1) is an important mediator in the development of obesity-related insulin resistance in humans and animals. For a better understanding of the structure and function of the PID1 gene and to study its effect in caprine, the cDNA of the PID1 gene from the abdominal muscle of Tianfu goat was cloned and sequenced. The structure of PID1 was analyzed using bioinformatics tools. The results showed that the full sequence of the caprine PID1 cDNA was 896 bp long and contained a 654 bp long coding region that encoded a 217 amino acid sequence. Fifteen phosphorylation sites were predicted in the translated PID1 protein. The protein had a phosphotyrosine-binding domain between Arg53 and Ile199. A phylogenic tree based on the PID1 proteins from other species revealed that the caprine protein was closely related to cattle PID1. Fluorescence quantitative PCR analyses revealed that PID1 was expressed in the heart, liver, spleen, lung, kidney, leg muscle, abdominal muscle and longissimus dorsi muscle of goats. In particular, high expression levels of PID1 were detected in liver and abdominal muscle, and low expression levels were seen in lung. Furthermore, the PID1 mRNA expression levels in the longissimus dorsi muscles increased gradually with the age of the goats (P < 0.05). Western blotting results detected the PID1 protein in six of the tissues in which PID1 was shown to be expressed; the two exceptions were liver and spleen.  相似文献   

3.
4.
Atg1 is a Serine/Threonine protein kinase that plays a pivotal role in autophagy. A complete coding sequence of ATG1 is not available for the silkworm, Bombyx mori which is a good model for studying the autophagic process.  相似文献   

5.
The salt-tolerant green alga Dunaliella has remarkable capability to survive in some extreme environments such as nitrogen starvation, which makes Dunaliella be a proper model for mining novel genes on nitrogen uptake or assimilation. In this study, a glutamine synthetase (GS) gene DvGS2 with amino acid identity of 72% to other homologous GS proteins, was isolated and characterized from Dunaliella viridis. Phylogenetic comparison with other GSs revealed that DvGS2 occupied an independent phylogenetic position. Expressional analysis in D. viridis cells under nitrogen starvation confirmed that DvGS2 increased its mRNA level in 12 h. Subcellular localization study and functional analysis in a GS-deficient Escherichia coli mutant proved that DvGS2 was a chloroplastic and functional GS enzyme. In order to investigate the potential application of DvGS2 in higher plants, the transgenic studies of DvGS2 in Arabidopsis thaliana were carried out. Results showed that the transgenic lines expressed the DvGS2 gene and demonstrated obviously enhanced root length (29%), fresh weight (40%–48% at two concentrations of nitrate supplies), stem length (21%), leaf size (39%) and silique number (44%) in contrast with the wild-type Arabidopsis. Furthermore, the transgenic lines had higher total nitrogen content (35%–43%), total GS activity (39%–45%) and soluble protein concentration (23%–24%) than the wild type. These results indicated that the overexpression of DvGS2 in A. thaliana resulted in higher biomass and the improvement of the host's nitrogen use efficiency.  相似文献   

6.
7.
8.
The Tibetan antelope (Pantholops hodgsonii) is a hypoxia-tolerant species that lives at an altitude of 4000–5000 m above sea level on the Qinghai–Tibetan plateau. Myoglobin is an oxygen-binding cytoplasmic hemoprotein that is abundantly expressed in oxidative skeletal and cardiac myocytes. Numerous studies have implicated that hypoxia regulates myoglobin expression to allow adaptation to conditions of hypoxic stress. Few studies have yet looked at the effect of myoglobin on the adaptation to severe environmental stress on TA. To investigate how the Tibetan antelope (TA) has adapted to a high altitude environment at the molecular level, we cloned and analyzed the myoglobin gene from TA, compared the expression of myoglobin mRNA and protein in cardiac and skeletal muscle between TA and low altitude sheep. The results indicated that the full-length myoglobin cDNA is composed of 1154 bp with a 111 bp 5′ untranslated region (UTR), a 578 bp 3′ UTR and a 465 bp open reading frame (ORF) encoding a polypeptide of 154 amino acid residues with a predicted molecular weight of 17.05 kD. The TA myoglobin cDNA sequence and the deduced amino acid sequence were highly homologous with that of other species. When comparing the myoglobin sequence from TA with the Ovis aries myoglobin sequence, variations were observed at codons 21 (GGT → GAT) and 78 (GAA → AAG), and these variations lead to changes in the corresponding amino acids, i.e., Gly → Asp and Glu → Lys, respectively. But these amino acid substitutions are unlikely to effect the ability of binding oxygen because their location is less important, which is revealed by the secondary structure and 3D structure of TA myoglobin elaborated by homology modeling. However, the results of myoglobin expression in cardiac and skeletal muscles showed that they were both significantly higher than that in plain sheep not only in mRNA but also protein level. We speculated that the higher expression of myoglobin in TA cardiac and skeletal muscles improves their ability to obtain and store oxygen under hypoxic conditions. This study indicated that TA didn't improve the ability of carrying oxygen by changing the molecular structure of myoglobin, but through increasing the expression of myoglobin in cardiac and skeletal muscles.  相似文献   

9.
10.
As an important economic insect, Bombyx mori is also a useful model organism for lepidopteran insect. Integrins are evolutionarily conserved from sponges to humans, and play vital roles in many physiological and pathological processes. To explore their diverse functions of integrins in insect, eleven integrins including six α and five β subunits were cloned and characterized from silkworm. Our results showed that integrins from silkworm own more family members compared to other invertebrates. Among those α subunits, integrins α1, α2, and the other four subunits belong to PS1, PS2, and PS3 groups, respectively. The β subunits mainly gather in the insect βν group except the β1 subunit which belongs to the insect β group. Expression profiles demonstrated that the integrins exhibited distinct patterns, but were mainly expressed in hemocytes. α1 and β2 subunits are the predominant ones either in the embryogenesis or larva stages. Interestingly, integrins were significantly up-regulated after stimulated by 20-hydroxyecdysone (20-E) in vivo. These results indicate that integrins perform diverse functions in hemocytes of silkworm. Overall, our results provide a new insight into the functional and evolutionary features of integrins.  相似文献   

11.
Dirisala VR  Jeevan A  Bix G  Yoshimura T  McMurray DN 《Gene》2012,498(1):120-127
The Guinea pig (Cavia porcellus) is one of the most relevant small animals for modeling human tuberculosis (TB) in terms of susceptibility to low dose aerosol infection, the organization of granulomas, extrapulmonary dissemination and vaccine-induced protection. It is also considered to be a gold standard for a number of other infectious and non-infectious diseases; however, this animal model has a major disadvantage due to the lack of readily available immunological reagents. In the present study, we successfully cloned a cDNA for the critical Th2 cytokine, interleukin-10 (IL-10), from inbred Strain 2 guinea pigs using the DNA sequence information provided by the genome project. The complete open reading frame (ORF) consists of 537 base pairs which encodes a protein of 179 amino acids. This cDNA sequence exhibited 87% homology with human IL-10. Surprisingly, it showed only 84% homology with the previously published IL-10 sequence from the C4-deficient (C4D) guinea pig, leading us to clone IL-10 cDNA from the Hartley strain of guinea pig. The IL-10 gene from the Hartley strain showed 100% homology with the IL-10 sequence of Strain 2 guinea pigs. In order to validate the only published IL-10 sequence existing in Genbank reported from C4D guinea pigs, genomic DNA was isolated from tissues of C4D guinea pigs. Amplification with various sets of primers showed that the IL-10 sequence reported from C4D guinea pigs contained numerous errors. Hence the IL-10 sequence that is being reported by us replaces the earlier sequence making our IL-10 sequence to be the first one accurate from guinea pig. Recombinant guinea pig IL-10 proteins were subsequently expressed in both prokaryotic and eukaryotic cells, purified and were confirmed by N-terminal sequencing. Polyclonal anti-IL-10 antibodies were generated in rabbits using the recombinant IL-10 protein expressed in this study. Taken together, our results indicate that the DNA sequence information provided by the genome project is useful to directly clone much needed cDNAs necessary to study TB in the guinea pig. The newly cloned guinea pig IL-10 cDNA and recombinant proteins will serve as valuable resources for immunological studies in the guinea pig model of TB and other diseases.  相似文献   

12.
13.
Carboxylesterase (EC 3.1.1.1) is a member of the carboxyl/cholinesterase (CCE) superfamily, which is widely distributed in animals, plants and microorganisms. This enzyme has been known to be associated with insecticide resistance and detoxification. Although CCEs have been extensively studied in insects, including lepidopterans, the research on butterflies, a major subgroup in Lepidoptera, is still poor. In the present study, we cloned a CCE gene (McCCE1) from the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The full-length cDNA encoding McCCE1 was 1786 bp, containing a 1641 bp open reading frame encoding 546 amino acids, a 38 bp 5′-untranslated region (5′-UTR), and a 107 bp 3′-UTR with a poly(A) tail. The functionally conserved amino acids in McCCE1 shared the 55% identity with the cytoplasmic esterase CCE017a in Helicoverpa armigera (Lepidoptera: Noctuidae), which has been associated with detoxification. Assays in vitro showed that the recombinant McCCE1 could hydrolyze α- and β-naphthyl acetate. Thus, the present study adds to the body of knowledge concerning the detoxification of pesticides by lepidopterans.  相似文献   

14.
Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby?s embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby?s role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning.  相似文献   

15.
16.
17.
18.
19.
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.  相似文献   

20.
Phosphoenolpyruvate carboxylase is an ubiquitous cytosolic enzyme that catalyzes the ß-carboxylation of phosphoenolpyruvate (PEP) and is encoded by multigene family in plants. It plays an important role in carbon economy of plants by assimilating CO2 into organic acids for subsequent C4 or CAM photosynthesis or to perform several anaplerotic roles in non-photosynthetic tissues. In this study, a cDNA clone encoding for PEPC polypeptide possessing signature motifs characteristic to ZmC4PEPC was isolated from Pennisetum glaucum (PgPEPC). Deduced amino acid sequence revealed its predicted secondary structure consisting of forty alpha helices and eight beta strands is well conserved among other PEPC homologs irrespective of variation in their primary amino acid sequences. Predicted PgPEPC quartenary structure is a tetramer consisting of a dimer of dimers, which is globally akin to maize PEPC crystal structure with respect to major chain folding wherein catalytically important amino acid residues of active site geometry are conserved. Recombinant PgPEPC protein expressed in E. coli and purified to homogeneity, possessed in vitro ß-carboxylation activity that is determined using a coupled reaction converting PEP into malate. Tetramer is the most active form, however, it exists in various oligomeric forms depending upon the protein concentration, pH, ionic strength of the media and presence of its substrate or effecters. Recombinant PgPEPC protein confers enhanced growth advantage to E. coli under harsh growth conditions in comparison to their respective controls; suggesting that PgPEPC plays a significant role in stress adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号