首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lysyl-tRNA synthetase from higher eukaryotes possesses a lysine-rich N-terminal polypeptide extension appended to a classical prokaryotic-like LysRS domain. Band shift analysis showed that this extra domain provides LysRS with nonspecific tRNA binding properties. A N-terminally truncated derivative of LysRS, LysRS-DeltaN, displayed a 100-fold lower apparent affinity for tRNA(3)Lys and a 3-fold increase in K(m) for tRNA(3)Lys in the aminoacylation reaction, as compared with the native enzyme. The isolated N-domain of LysRS also displayed weak affinity for tRNA, suggesting that the catalytic and N-domains of LysRS act synergistically to provide a high affinity binding site for tRNA. A more detailed analysis revealed that LysRS binds and specifically aminoacylates an RNA minihelix mimicking the amino acid acceptor stem-loop structure of tRNA(3)Lys, whereas LysRS-DeltaN did not. As a consequence, merging an additional RNA-binding domain into a bacterial-like LysRS increases the catalytic efficiency of the enzyme, especially at the low concentration of deacylated tRNA prevailing in vivo. Our results provide new insights into tRNA(Lys) channeling in eukaryotic cells and shed new light on the possible requirement of native LysRS for triggering tRNA(3)Lys packaging into human immunodeficiency virus, type 1 viral particles.  相似文献   

3.
Previous investigations show that tRNA(Arg)-induced conformational changes of arginyl-tRNA synthetase (ArgRS) Omega-loop region (Escherichia coli (E. coli), Ala451-Ala457) may contribute to the productive conformation of the enzyme catalytic core, and E. coli tRNA(2)(Arg)(ICG)-bound and -free conformations of the Omega-loop exchange at an intermediate rate on NMR timescale. Herein, we report that E. coli ArgRS catalyzes tRNA(2)(Arg)(ICG) and tRNA(4)(Arg)(UCU) with similar efficiencies. However, 19F NMR spectroscopy of 4-fluorotryptophan-labeled E. coli ArgRS reveals that the tRNA(4)(Arg)(UCU)-bound and -free conformations of the Omega-loop region interconvert very slowly and the lifetime of bound conformation is much longer than 0.33 ms. Therefore, tRNA(4)(Arg)(UCU) differs from tRNA(2)(Arg)(ICG) in the conformation-exchanging rate of the Omega-loop. Comparative structure model of E. coli ArgRS is presented to rationalize these 19F NMR data. Our 19F NMR and catalytic assay results suggest that the tRNA(Arg)-induced conformational changes of Omega-loop little contribute to the productive conformation of ArgRS catalytic core.  相似文献   

4.
In Salmonella typhimurium, the tRNA(m1G37)methyltransferase (the product of the trmD gene) catalyzes the formation of m1G37, which is present adjacent and 3' of the anticodon (position 37) in seven tRNA species, two of which are tRNA(Pro)CGG and tRN(Pro)GGG. These two tRNA species also exist as +1 frameshift suppressor sufA6 and sufB2, respectively, both having an extra G in the anticodon loop next to and 3' of m1G37. The wild-type form of the tRNA(m1G37)methyltransferase efficiently methylates these mutant tRNAs. We have characterized one class of mutant forms of the tRNA(m1G37)methyltransferase that does not methylate the sufA6 tRNA and thereby induce extensive frameshifting resulting in a nonviable cell. Accordingly, pseudorevertants of strains containing such a mutated trmD allele in conjunction with the sufA6 allele had reduced frameshifting activity caused by either a 9-nt duplication in the sufA6tRNA or a deletion of its structural gene, or by an increased level of m1G37 in the sufA6tRNA. However, the sufB2 tRNA as well as the wild-type counterparts of these two tRNAs are efficiently methylated by this class of structural altered tRNA(m1G37)methyltransferase. Two other mutations (trmD3, trmD10) were found to reduce the methylation of all potential tRNA substrates and therefore primarily affect the catalytic activity of the enzyme. We conclude that all mutations except two (trmD3 and trmD10) do not primarily affect the catalytic activity, but rather the substrate specificity of the tRNA, because, unlike the wild-type form of the enzyme, they recognize and methylate the wild-type but not an altered form of a tRNA. Moreover, we show that the TrmD peptide is present in catalytic excess in the cell.  相似文献   

5.
H Saito  K Watanabe    H Suga 《RNA (New York, N.Y.)》2001,7(12):1867-1878
We have recently reported an in vitro-evolved precursor tRNA (pre-tRNA) that is able to catalyze aminoacylation on its own 3'-hydroxyl group. This catalytic pre-tRNA is susceptible to RNase P RNA, generating the 5'-leader ribozyme and mature tRNA. The 5'-leader ribozyme is also capable of aminoacylating the tRNA in trans, thus acting as an aminoacyl-tRNA synthetase-like ribozyme (ARS-like ribozyme). Here we report its structural characterization that reveals the essential catalytic core. The ribozyme consists of three stem-loops connected by two junction regions. The chemical probing analyses show that a U-rich region (U59-U62 in J2a/3 and U67-U68 in L3) of the ribozyme is responsible for the recognition of the phenylalanine substrate. Moreover, a GGU-motif (G70-U72) of the ribozyme, adjacent to the U-rich region, forms base pairs with the tRNA 3' terminus. Our demonstration shows that simple RNA motifs can recognize both the amino acid and tRNA simultaneously, thus aminoacylating the 3' terminus of tRNA in trans.  相似文献   

6.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

7.
8.
The DNMT2 enzyme methylates tRNA-Asp at position C38. Because there is no tRNA-Dnmt2 cocrystal structure available, we have mapped the tRNA binding site of DNMT2 by systematically mutating surface-exposed lysine and arginine residues to alanine and studying the tRNA methylation activity and binding of the corresponding variants. After mutating 20 lysine and arginine residues, we identified eight of them that caused large (>4-fold) decreases in catalytic activity. These residues cluster within and next to a surface cleft in the protein, which is large enough to accommodate the tRNA anticodon loop and stem. This cleft is located next to the binding pocket for the cofactor S-adenosyl-l-methionine, and the catalytic residues of DNMT2 are positioned at its walls or bottom. Many of the variants with strongly reduced catalytic activity showed only a weak loss of tRNA binding or even bound better to tRNA than wild-type DNMT2, which suggests that the enzyme induces some conformational changes in the tRNA in the transition state of the methyl group transfer reaction. Manual placement of tRNA into the structure suggests that DNMT2 mainly interacts with the anticodon stem and loop.  相似文献   

9.
A set of catalysts for aminoacyl-tRNA synthesis is an essential component for translation. The RNA world hypothesis postulates that RNA catalysts could have played this role. Here we show an in vitro evolved precursor tRNA consisting of two domains, a catalytic 5'-leader sequence and an aminoacyl-acceptor tRNA. The 5'-leader sequence domain selectively self-charges phenylalanine on the 3'-terminus of the tRNA domain. This cis-acting ribozyme is susceptible to RNase P RNA, generating the corresponding 5'-leader segment and the mature tRNA. Moreover, the 5'-leader segment is able to aminoacylate the mature tRNA in trans. Mutational studies have revealed that C(74) and C(75) at the tRNA aminoacyl-acceptor end form base pairs with G71 and G70 of the trans-acting ribozyme. Such Watson-Crick base pairing with tRNA has been observed in RNase P RNA and 23S rRNA, suggesting that all three ribozymes use a similar mechanism for the recognition of the aminoacyl-acceptor end. Our demonstrations indicate that catalytic precursor tRNAs could have provided the foundations for the genetic coding system in the proto-translation system.  相似文献   

10.
Guigou L  Mirande M 《Biochemistry》2005,44(50):16540-16548
Arginyl-tRNA synthetase (ArgRS) catalyzes formation of arginyl-adenylate in a tRNA-dependent reaction. Previous studies have revealed that conformational changes occur upon tRNA binding. In this study, we analyzed the sequence and structural features of tRNA that are essential to activate the catalytic center of mammalian arginyl-tRNA synthetase. Here, tRNA variants with different activator potential are presented. The three regions that are crucial for activation of ArgRS are the terminal adenosine, the D-loop, and the anticodon stem-loop of tRNA. The Add-1 N-terminal domain of ArgRS, which has the very unique property among aminoacyl-tRNA synthetases to interact with the D-loop in the corner of the convex side of tRNA, has an essential role in anchoring tRNA and participating in tRNA-induced amino acid activation. The results suggest that locking the acceptor extremity, the anticodon loop, and the D-loop of tRNA on the catalytic, anticodon-binding, and Add-1 domains of ArgRS also requires some flexibility of the tRNA molecule, provided by G:U base pairs, to achieve the productive conformation of the active site of the enzyme by induced fit.  相似文献   

11.
We have previously reported that the catalytic RNA subunit of RNase P of Escherichia coli (M1 RNA) cleaves Drosophila initiator methionine tRNA (tRNA(Met)i) within the mature tRNA sequence to produce specific fragments. This cleavage was dependent on the occurrence of an altered conformation of the tRNA substrate. We call this further cleavage hyperprocessing. In the present paper, to search for another tRNA that can be hyperprocessed in vitro, we used total mature tRNAs from Drosophila as substrates for the in vitro M1 RNA reaction. We found that some tRNAs can be hyperprocessed by M1 RNA and that two such tRNAs are an alanine tRNA and a histidine tRNA. Using mutant substrates of these tRNAs, we also show that the hyperprocessing by M1 RNA is dependent on the occurrence of altered conformations of these tRNAs. The altered conformations were very similar to that of tRNA(Met)i. We show here that M1 RNA can be used as a powerful tool to detect the alternative conformation of tRNAs. The relationship between these hyperprocessing reactions and stability of the tRNA structure will also be discussed.  相似文献   

12.
The tRNA(Gm18) methyltransferase (TrmH) catalyzes the 2'-O methylation of guanosine 18 (Gua18) of tRNA. We solved the crystal structure of Thermus thermophilus TrmH complexed with S-adenosyl-L-methionine at 1.85 A resolution. The catalytic domain contains a deep trefoil knot, which mutational analyses revealed to be crucial for the formation of the catalytic site and the cofactor binding pocket. The tRNA dihydrouridine(D)-arm can be docked onto the dimeric TrmH, so that the tRNA D-stem is clamped by the N- and C-terminal helices from one subunit while the Gua18 is modified by the other subunit. Arg41 from the other subunit enters the catalytic site and forms a hydrogen bond with a bound sulfate ion, an RNA main chain phosphate analog, thus activating its nucleophilic state. Based on Gua18 modeling onto the active site, we propose that once Gua18 binds, the phosphate group activates Arg41, which then deprotonates the 2'-OH group for methylation.  相似文献   

13.
The human tRNA m(5)C methyltransferase is a potential target for anticancer drugs because it is a novel downstream target of the proto-oncogene myc, mediating Myc-induced cell proliferation. Sequence comparisons of RNA m(5)C methyltransferases indicate that the eukaryotic enzymes possess, in addition to a conserved catalytic domain, a large characteristic carboxyl-terminal extension. To gain insight into the function of this additional domain, the modular architecture of the yeast tRNA m(5)C methyltransferase orthologue, Trm4p, was studied. The yeast enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to carbon 5 of cytosine at different positions depending on the tRNAs. By limited proteolysis, Trm4p was shown to be composed of two domains that have been separately produced and purified. Here we demonstrate that the aminoterminal domain, encompassing the active site, binds tRNA with similar affinity as the whole enzyme but shows low catalytic efficiency. The carboxyl-terminal domain displays only weak affinity for tRNA. It is not required for m(5)C formation and does not appear to contribute to substrate specificity. However, it enhances considerably the catalytic efficiency of the amino-terminal domain.  相似文献   

14.
The exosome subunit Rrp44 plays a direct role in RNA substrate recognition   总被引:4,自引:0,他引:4  
The exosome plays key roles in RNA maturation and surveillance, but it is unclear how target RNAs are identified. We report the functional characterization of the yeast exosome component Rrp44, a member of the RNase II family. Recombinant Rrp44 and the purified TRAMP polyadenylation complex each specifically recognized tRNA(i)(Met) lacking a single m(1)A(58) modification, even in the presence of a large excess of total tRNA. This tRNA is otherwise mature and functional in translation in vivo but is presumably subtly misfolded. Complete degradation of the hypomodified tRNA required both Rrp44 and the poly(A) polymerase activity of TRAMP. The intact exosome lacking only the catalytic activity of Rrp44 failed to degrade tRNA(i)(Met), showing this to be a specific Rrp44 substrate. Recognition of hypomodified tRNA(i)(Met) by Rrp44 is genetically separable from its catalytic activity on other substrates, with the mutations mapping to distinct regions of the protein.  相似文献   

15.
tRNA核酸内切酶的研究进展   总被引:1,自引:0,他引:1  
杨景  于莹莹  黄鹰 《生命科学》2008,20(2):190-195
tRNA在蛋白质合成过程中起着极其重要的作用。在所有的生物体内,tRNA首先以前体形式转录,然后必需经过一系列的加工后才能成为有功能的tRNA分子。tRNaseZ、RNaseP和tRNA剪接内切酶是参与tRNA前体加工的三种主要的核酸内切酶,分别参与tRNA前体3′末端、tRNA前体5′末端和内含子剪接的加工。这三种酶具有不同的结构特征,并且利用完全不同的催化机制水解磷酸二酯键。tRNaseZ和RNaseP都是金属酶,活性中心分别需要Zn^2+和Mg^2+的参与;而tRNA剪接内切酶活性中心不需要金属离子,是一个由不同催化亚基上的关键氨基酸残基构成的组合式活性中心。  相似文献   

16.
Glutaminyl-tRNA synthetase generates Gln-tRNA(Gln) 10(7)-fold more efficiently than Glu-tRNA(Gln) and requires tRNA to synthesize the activated aminoacyl adenylate in the first step of the reaction. To examine the role of tRNA in amino acid activation more closely, several assays employing a tRNA analog in which the 2'-OH group at the 3'-terminal A76 nucleotide is replaced with hydrogen (tRNA(2'HGln)) were developed. These experiments revealed a 10(4)-fold reduction in kcat/Km in the presence of the analog, suggesting a direct catalytic role for tRNA in the activation reaction. The catalytic importance of the A76 2'-OH group in aminoacylation mirrors a similar role for this moiety that has recently been demonstrated during peptidyl transfer on the ribosome. Unexpectedly, tracking of Gln-AMP formation utilizing an alpha-32P-labeled ATP substrate in the presence of tRNA(2'HGln) showed that AMP accumulates 5-fold more rapidly than Gln-AMP. A cold-trapping experiment revealed that the nonenzymatic rate of Gln-AMP hydrolysis is too slow to account for the rapid AMP formation; hence, the hydrolysis of Gln-AMP to form glutamine and AMP must be directly catalyzed by the GlnRS x tRNA(2'HGln) complex. This hydrolysis of glutaminyl adenylate represents a novel reaction that is directly analogous to the pre-transfer editing hydrolysis of noncognate aminoacyl adenylates by editing synthetases such as isoleucyl-tRNA synthetase. Because glutaminyl-tRNA synthetase does not possess a spatially separate editing domain, these data demonstrate that a pre-transfer editing-like reaction can occur within the synthetic site of a class I tRNA synthetase.  相似文献   

17.
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.  相似文献   

18.
tRNA 3' processing is one of the essential steps during tRNA maturation. The tRNA 3'-processing endonuclease tRNase Z was only recently isolated, and its functional domains have not been identified so far. We performed an extensive mutational study to identify amino acids and regions involved in dimerization, tRNA binding, and catalytic activity. 29 deletion and point variants of the tRNase Z enzyme were generated. According to the results obtained, variants can be sorted into five different classes. The first class still had wild type activity in all three respects. Members of the second and third class still formed dimers and bound tRNAs but had reduced catalytic activity (class two) or no catalytic activity (class three). The fourth class still formed dimers but did not bind the tRNA and did not process precursors. Since this class still formed dimers, it seems that the amino acids mutated in these variants are important for RNA binding. The fifth class did not have any activity anymore. Several conserved amino acids could be mutated without or with little loss of activity.  相似文献   

19.
Early work on aminoacylation of alanine-specific tRNA (tRNA(Ala)) by alanyl-tRNA synthetase (AlaRS) gave rise to the concept of an early "second genetic code" imbedded in the acceptor stems of tRNAs. A single conserved and position-specific G:U base pair in the tRNA acceptor stem is the key identity determinant. Further understanding has been limited due to lack of a crystal structure of the enzyme. We determined a 2.14 A crystal structure of the 453 amino acid catalytic fragment of Aquifex aeolicus AlaRS. It contains the catalytic domain characteristic of class II synthetases, a helical domain with a hairpin motif critical for acceptor-stem recognition, and a C-terminal domain of a mixed alpha/beta fold. Docking of tRNA(Ala) on AlaRS shows critical contacts with the three domains, consistent with previous mutagenesis and functional data. It also suggests conformational flexibility within the C domain, which might allow for the positional variation of the key G:U base pair seen in some tRNA(Ala)s.  相似文献   

20.
We have identified by nucleotide analog interference mapping (NAIM) exocyclic NH2 groups of guanosines in RNase P RNA from Escherichia coli that are important for tRNA binding. The majority of affected guanosines represent phylogenetically conserved nucleotides. Several sites of interference could be assigned to direct contacts with the tRNA moiety, whereas others were interpreted as reflecting indirect effects on tRNA binding due to the disruption of tertiary contacts within the catalytic RNA. Our results support the involvement of the 2-NH2 groups of G292/G293 in pairing with C74 and C75 of tRNA CCA-termini, as well as formation of two consecutive base triples involving C75 and A76 of CCA-ends interacting with G292/A258 and G291/G259, respectively. Moreover, we present first biochemical evidence for two tertiary contacts (L18/P8 and L8/P4) within the catalytic RNA, whose formation has been postulated previously on the basis of phylogenetic comparative analyses. The tRNA binding interference data obtained in this and our previous studies are consistent with the formation of a consecutive nucleotide triple and quadruple between the tetraloop L18 and helix P8. Formation of the nucleotide triple (G316 and A94:U104 in wild-type E. coli RNase P RNA) is also supported by mutational analysis. For the mutant RNase P RNA carrying a G94:C104 double mutation, an additional G316-to-A mutation resulted in a restoration of binding affinity for mature and precursor tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号