首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptospira interrogans serovar icterohaemorrhagiae strains Ictero No. I and RGA and serovar copenhageni strains M20, Shiromizu and Shibaura were examined by restriction endonuclease DNA analysis. Fifteen endonucleases (AluI, BamHI, BglII, EcoRI, HaeIII, HhaI, HindIII, KpnI, PstI, SacI, SalI, SmaI, StyI, XbaI and XhoI) were used as the digesting enzymes. Strain Ictero No. I showed endonuclease cleavage patterns which differed from those of the other four strains only when it was digested with enzymes KpnI and HindIII. When digested with KpnI, an extra band of about 5.4 kb was clearly produced, and when digested with HindIII, an extra band of about 25 kb was produced. When the other 13 enzymes were used, no differences were found between the endonuclease cleavage patterns among the five strains. Moreover, strains RGA, M20, Shiromizu and Shibaura could not be distinguished by the restriction endonuclease DNA analysis using all 15 endonucleases. In addition, six newly isolated leptospires from patients with leptospirosis and from Rattus norvegicus were compared with the Ictero No. I and M20 strains, by restriction endonuclease DNA analysis using enzymes KpnI and HindIII. Three leptospires belonging to serovar icterohaemorrhagiae showed the same endonuclease cleavage patterns as the M20 strain. The other three strains, which belong to serovar copenhageni, showed almost the same endonuclease cleavage patterns as the M20 strain; only the Kai ima 702 strain produced an extra band which was not identical to the Ictero No. I-specific extra band when digested with HindIII. The leptospiral restriction endonuclease DNA analysis has revealed taxonomic structures that are unrecognized by serology alone.  相似文献   

2.
A J Jeffreys 《Cell》1979,18(1):1-10
DNA prepared from 60 unrelated individuals was cleaved with one of eight different restriction endonucleases and the resulting DNA fragments were separated by agarose gel electrophoresis. DNA fragments containing G gamma-, A gamma-, delta- or beta-globin genes were detected by Southern blot hybridization, using as probe either a 32P-labeled cloned DNA copy of rabbit beta-globin messenger RNA or labeled human beta- and G gamma- globin cDNA plasmids. Three types of variant restriction enzyme patterns of globin DNA fragments were detected in otherwise normal individuals. One variant pattern, found in only one person, was caused by an additional restriction endonuclease Pst I cleavage site in the center of the delta- globin gene intervening sequence; the subject was heterozygous for the presence of this cleavage site and was shown to have inherited it from her mother. Another variant pattern resulted from the appearance of an endonuclease Hind III cleavage site in the intervening sequence of the A gamma-globin gene; this variant is polymorphic, with a gene frequency for the presence of the intragenic Hind III site of 0.23. This Hind III cleavage site polymorphism is also found in the G gamma-globin gene intervening sequence and thus the polymorphism itself appears to be duplicated over the pair of gamma-globin loci. These variants can be used to derive an approximate estimate of the total number of different DNA sequence variants in man.  相似文献   

3.
Serovars jequitaia and tororò of Leptospira biflexa were cultured in the presence of homologous factor serum containing factorial antibodies (FcAbs) to their major antigens. After 39 serial passages they were then re-tested to determine whether their major antigens had remained unchanged. It was found that each parent strain had been replaced by an antigenic variant. The disappearance of each parent strain and its replacement by an antigenic variant was attributed to the selective conditions imposed by FcAbs. The antigenic variants behaved like true mutants. They lacked the major serovar antigens of the parent strains and had acquired some major antigens similar to those of two different serovars, one of which belonged to the same serogroup as the parent strain and the other to a different serogroup. A comparison of the major antigens of the parent strains with those of their antigenic variants indicated that factorial antibodies may be used selectively to obtain antigenic variants with a predefined pattern of major antigens.  相似文献   

4.
Shatilla A  Leduc A  Yang X  Ramotar D 《DNA Repair》2005,4(6):655-670
The Saccharomyces cerevisiae mutant strain YW778, which lacks apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase DNA repair activities, displays high levels of spontaneous mutations and hypersensitivities to several DNA damaging agents. We searched a cDNA library derived from the nematode Caenorhabditis elegans for gene products that would rescue the DNA repair defects of this yeast mutant. We isolated two genes, apn-1 and exo-3, encoding proteins that have not been previously characterized. Both APN-1 and EXO-3 share significant identity with the functionally established Escherichia coli AP endonucleases, endonuclease IV and exonuclease III, respectively. Strain YW778 expressing either apn-1 or exo-3 shows parental levels of spontaneous mutations, as well as resistance to DNA damaging agents that produce AP sites and DNA single strand breaks with blocked 3'-ends. Using an in vitro assay, we show that the apn-1 and exo-3 genes independently express AP endonuclease activity in the yeast mutant. We further characterize the EXO-3 protein and three of its mutated variants E68A, D190A, and H279A. The E68A variant retains both AP endonuclease and 3'-diesterase repair activities in vitro, yet severely lacks the ability to protect strain YW778 from spontaneous and drug-induced DNA lesions, suggesting that this variant E68A may possess a defect that interferes with the repair process in vivo. In contrast, D190A and H279A are completely devoid of DNA repair activities and fail to rescue the genetic instability of strain YW778. Our data strongly suggest that EXO-3 and APN-1 are enzymes possessing intrinsic AP endonuclease and 3'-diesterase activities.  相似文献   

5.
Schistosoma mansoni genomic DNA from male and female adult worms was subjected to restriction by the isoschizomeric endonucleases HpaII and MspI, which display different sensitivities with respect to cytosine methylation. The digested DNA was hybridized with 13 S. mansoni probes. Southern blot analysis showed that there were no observable differences in the restriction patterns of the two isoschizomers and that the patterns were identical in male and female parasites. Adenine methylation was also ruled out since no differences were observed with DpnI, Sau3A1, or MboI restriction enzymes. The methylation-dependent restriction endonuclease McrBC, which cleaves DNA containing methylcytosine and will not cleave unmethylated DNA, did not digest S. mansoni genomic DNA. These results demonstrate that the genome of adult S. mansoni is not methylated.  相似文献   

6.
Restriction endonucleases are highly specific in recognizing the particular DNA sequence they act on. However, their activity is affected by sequence context, enzyme concentration and buffer composition. Changes in these factors may lead to either ineffective cleavage at the cognate restriction site or relaxed specificity allowing cleavage of degenerate ‘star’ sites. Additionally, uncharacterized restriction endonucleases and engineered variants present novel activities. Traditionally, restriction endonuclease activity is assayed on simple substrates such as plasmids and synthesized oligonucleotides. We present and use high-throughput Illumina sequencing-based strategies to assay the sequence specificity and flanking sequence preference of restriction endonucleases. The techniques use fragmented DNA from sequenced genomes to quantify restriction endonuclease cleavage on a complex genomic DNA substrate in a single reaction. By mapping millions of restriction site–flanking reads back to the Escherichia coli and Drosophila melanogaster genomes we were able to quantitatively characterize the cognate and star site activity of EcoRI and MfeI and demonstrate genome-wide decreases in star activity with engineered high-fidelity variants EcoRI-HF and MfeI-HF, as well as quantify the influence on MfeI cleavage conferred by flanking nucleotides. The methods presented are readily applicable to all type II restriction endonucleases that cleave both strands of double-stranded DNA.  相似文献   

7.
A novel plasmid designated pSa1 has been isolated from Streptomyces albus G strain producing SalGI restriction endonuclease. Molecular weight of the plasmid is 3.4 +/- 0.2 mD. The action of 12 restriction endonucleases on the plasmid DNA was studied. Restriction map of pSa1 DNA was established for SmaI, HindII, XbaI and KpnI endonucleases.  相似文献   

8.
Bujnicki JM  Rychlewski L 《Gene》2001,267(2):183-191
The Escherichia coli K-12 restriction enzyme Mrr recognizes and cleaves N6-methyladenine- and 5-methylcytosine-containing DNA. Its amino acid sequence has been subjected to structure prediction and comparison with other sequences from publicly available sources. The results obtained suggest that Mrr and related putative endonucleases possess a cleavage domain typical for all the so far structurally characterized type II restriction enzymes, however with an unusual glutamine residue at the central position of the (D/E)-(D/E)XK hallmark of the active site. The "missing" acidic side chain was instead found anchored in a different, unusual position, suggesting that Mrr represents a third topological variant of the endonuclease active site in addition to the two alternatives determined previously (Skirgaila et al., 1998. J. Mol. Biol. 279, 473-481). One of the newly identified putative endonucleases from the Mrr family is composed of two diverged cleavage domains, which possess both the "typical" D-EXK and the "Mrr-like" D-QXK variants of the active site. Among the Mrr homologs there are also proteins from yeast, in which restriction phenotype has not been observed, suggesting that the free-standing Eukaryotic PD-(D/E)XK superfamily members might be implicated in other cellular processes involving enzymatic DNA cleavage.  相似文献   

9.
A large plaque (LP) and a small plaque (SP) variant of PM2 bacteriophage were isolated from a mixture of the two plaque variants and were grown separately in the appropriate host bacterium,Alteromonas espejiana. They have remained pure for approximately one year from the original isolation. Restriction endonuclease analyses revealed differences in theHaeIII restriction profile between the two variants.HaeIII fragment 1 of the SP DNA was found to be smaller than the corresponding fragment from the LP variant DNA, whereas fragment 7 from the SP DNA was slightly larger than the same fragment from LP DNA. Electron microscopy of heteroduplexes formed between the DNAs from the two variants revealed that the deletion in fragment 1 mapped very close to the junction betweenHaeIII fragments 1 and 13 on the physical map of PM2 DNA. The difference in DNA length between the two variants results from addition or deletion mutations.Deceased.  相似文献   

10.
Two known guinea pig herpesviruses, guinea pig cytomegalovirus (GPCMV) and guinea pig herpes-like virus (GPHLV), and well characterized. A third herpesvirus (GPXV) was originally isolated from leukocytes of healthy strain 2 guinea pigs. Growth of GPXV in guinea pig embryo fibroblastic cells produced a characteristic cytopathic effect. Electron microscopy of guinea pig cells infected with GPXV revealed the morphological development of a herpesvirus. Cross-neutralization tests and immunoferritin electron microscopy demonstrated that GPXV, GPCMV, and GPHLV were serologically distinct herpeviruses of guinea pigs. To confirm the distinction between these three herpesviruses, DNA genomes were compared by CsCl equilibrium buoyant density measurements and restriction endonuclease cleavage analysis. 32P-labeled viral DNA ws obtained from nucleocapsids isolated from virus-infected cells, and the buoyant density of GPXV DNA differed from that of GPCMV and GPHLV. Cleavage of viral DNAs with restriction endonucleases followed by gel electrophoresis revealed distinct patterns for each virus.  相似文献   

11.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

12.
Restriction endonucleases have proven to be especially resistant to engineering altered substrate specificity, in part, due to the requirement of a cognate DNA methyltransferase for cellular DNA protection. The thermophilic restriction endonuclease BstYI recognizes and cleaves all hexanucleotide sequences described by 5'-R GATCY-3' (where R=A or G and Y=C or T). The recognition of a degenerate sequence is a relatively common feature of the more than 3000 characterized restriction endonucleases. However, very little is known concerning substrate recognition by such an enzyme. Our objective was to investigate the substrate specificity of BstYI by attempting to increase the specificity to recognition of only AGATCT. By a novel genetic selection/screening process, two BstYI variants were isolated with a preference for AGATCT cleavage. A fundamental element of the selection process is modification of the Escherichia coli host genomic DNA by the BglII N4-cytosine methyltransferase to protect AGATCT sites. The amino acid substitutions resulting in a partial change of specificity were identified and combined into one superior variant designated NN1. BstYI variant NN1 displays a 12-fold preference for cleavage of AGATCT over AGATCC or GGATCT. Moreover, cleavage of the GGATCC sequence is no longer detected. This study provides further evidence that laboratory evolution strategies offer a powerful alternative to structure-guided protein design.  相似文献   

13.
14.
The molecular mechanism of how the dam-methylation status of the DNA is recognized during DNA mismatch repair by the strand discrimination endonuclease MutH is not known. A comparison of the crystal structure of MutH with those of co-crystal structures of several restriction endonucleases, together with a multiple sequence alignment of MutH and related proteins suggested that Phe94, Arg184 and Tyr212 could be involved in discrimination between a methylated or unmethylated adenine in the d(GATC) sequence. A mutational analysis revealed that the variants R184A and Y212S, but not F94A, were substantially reduced in their ability to complement a mismatch repair deficiency in a mutH(-) Escherichia coli strain. In vitro, R184A displayed a strongly reduced endonuclease activity, whereas the Y212S variant has almost completely lost its preference for cleaving the unmethylated strand at hemimethylated d(GATC) sites. Furthermore, the Y212 variant can cleave fully methlyated d(GATC) sites at a comparable rate to unmethylated d(GATC) sites. This demonstrates that Tyr212 is an important, if not the only amino acid residue in MutH for sensing the methylation status of the DNA.  相似文献   

15.
The DNAs from virulent strain BC-1 and avirulent strains C2(A) of Marek's disease virus (MDV) were compared by electrophoresis on 0.5% agarose gels of the products obtained with the restriction endonucleases Bam H1, Sal 1, and Sma 1. The patterns of the fragments of the DNAs from these two strains were very similar, but showed some significant differences in the number and mobility of the DNA bands. The DNA fragments obtained with the restriction endonucleases, and especially Sma 1, were mostly present in equal molar ratios, but a few of those obtained with Bam H1 and Sal 1 were present in submolar amounts. In addition, several fragments obtained with Bam H1 and Sal 1 were present in greater than molar quantities, suggesting the presence of reiterated sequences in MDV DNA. The terminal fragments of MDV DNA were identified by their sensitivity to lambda 5'-exonuclease. The terminal fragments obtained with Bam H1 A and Sal 1B showed heterogeneous electrophoretic mobility and contained sequences with high content of guanosine and cytosine, suggesting the presence of reiterated sequences at the end of the MDV DNA molecule.  相似文献   

16.
Plasmid, designated pFT15/10-1, was isolated from Francisella tularensis vaccine strain 15/10. The plasmid is presented by the homogeneous 5.02 +/- 0.054 Md monomeric circular DNA molecules in electron microscopic preparations. Plasmid size is 7-7.3 kb as defined by electrophoresis in agarose gel. The restriction analysis has revealed that plasmid pFT15/10-1 possesses a single specific cleavage site for restriction endonuclease EcoRI, two sites for restriction endonucleases BamHI, BgIII, HincII, HindIII, PstI, three sites for BglI and SalI, some for AluI, TagI, MvaI, CfrI. Plasmid is not digested by restriction endonucleases SmaI, XmaI, KpnI, MluI. Restriction map of the plasmid was constructed for most frequently used restriction endonucleases.  相似文献   

17.
Restriction endonucleases from Providencia stuartii (Pst 1) and Bacillus amyloliquefaciens H (Bam 1) cleave SV 40 DNA at two and one specific sites, respectively. Using EcoRI and Hind III endonuclease restriction sites as reference, the two Pst I sites were mapped at 0.050; 0.265 and the Bam I site was mapped at 0.170 of the genome length, clockwise, from the single EcoRI cleavage site.  相似文献   

18.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

19.
The simultaneous analysis of DNAase I "footprinting" data and restriction endonucleases inhibition data was performed on the same DNA end-labelled fragment. The inhibition induced by netropsin, a number of bis-netropsins and distamycin A was investigated. These experiments led us to the following conclusions. The restriction endonucleases inhibition by the ligands is caused by the ligand molecules binding in the close vicinity to the restriction endonuclease recognition sequence. The zone of +/- 4 bp from the center of the restriction endonuclease recognition sequence can be defined as the zone of the influence of the bounded ligand on the restriction endonuclease. But in this case the intersection of recognition sequence and the binding site occupied by a single ligand molecule is not sufficient for the inhibition to occur. Restriction endonuclease cutting sites protected by netropsin can be predicted basing upon known nucleotide sequence specificity of netropsin. Netropsin and bis-netropsins show different nucleotide sequence specificity. This fact can be used for selective inhibition of restriction endonucleases.  相似文献   

20.
Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号