首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The functional association of flavonoids with plant stress responses, though widely reported in the literature, remains to be documented in rice. Towards this end we chose a transgenic approach with well characterized regulatory and structural genes from maize involved in flavonoid biosynthesis. Activation of anthocyanin pathway in rice was investigated with the maize genes. Production of purple anthocyanin pigments were observed in transformed Tp309 (a japonica rice variety) calluses upon the introduction of the maize regulatory genes C1 (coloured-1), R (red) and the structural gene C2 (coloured-2, encoding chalcone synthase). In addition, stable transgenic plants carrying the maize C2 gene under the control of the maize Ubiquitin promoter were generated. A localized appearance of purple/red pigment in the leaf blade and leaf sheath of R0 C2 transgenic seedlings was observed. Such a patchy pattern of the transgene expression appears to be conditioned by the genetic background of Tp309, which is homozygous for dominant color inhibitor gene(s) whose presence was unravelled by appropriate genetic crosses. Southern blot analysis of the transgenic plants demonstrated that c2 cDNA was integrated into the genome. Western blot analysis of these primary transgenics revealed the CHS protein while it was not detected in the control untransformed Tp3O9, suggesting that Tp309 might have a mutation at the corresponding C2 locus or that the expression of this gene is suppressed in Tp309. Further analysis of C2 transgenics revealed CHS protein only in three out of sixteen plants that were western-positive in the R0 generation, suggesting gene silencing. Preliminary screening of these R1 plants against the rice blast fungus Magnaporthe grisea revealed an increase in resistance.  相似文献   

3.
4.
The Purple leaf (Pl) locus of rice (Oryza sativa L.) affects regulation of anthocyanin biosynthesis in various plant tissues. The tissue-specific patterns of anthocyanin pigmentation, together with the syntenic relationship, indicate that the rice Pl locus may play a role in the anthocyanin pathway similar to the maize R/B loci. We isolated two cDNAs showing significant identity to the basic helix-loop-helix (bHLH) proteins found in the maize R gene family. OSB1 appeared to be allelic to the previously isolated R homologue, Ra1, but showed a striking difference at the C-terminus because of a 2-bp deletion. Characterization of the corresponding genomic region revealed that the sequence identical to a 5'-portion of OSB2 existed approximately 10-kb downstream of the OSB1 coding region. OSB2 lacks a conserved C-terminal domain. Restriction fragment length polymorphism analyses using an F(2) population indicate that both genes co-segregate with the purple leaf phenotype. A transient complementation assay showed that the anthocyanin pathway is inducible by OSB1 or OSB2. These results suggest that the Pl(w) allele may be complex and composed of at least two genes encoding bHLH proteins.  相似文献   

5.
The transposon Mutator was first identified in maize, and is one of the most active mobile elements in plants. The Arabidopsis thaliana genome contains at least 200 Mutator-like elements (MULEs), which contain the Mutator-like transposase gene, and often additional genes. We have detected a novel type of MULEs in melon (CUMULE), which, besides the transposase, contains two ubiquitin-like specific protease-like sequences (ULP1). This element is not present in the observed location in some melon cultivars. Multiple copies of this element exist in the Cucumis melo genome, and it has been detected in other Cucurbitaceae species. Analysis of the A. thaliana genome revealed more than 90 CUMULE-like elements, containing one or two Ulp1-like sequences, although no evidence of mobility exists for these elements. We detected various putative transposable elements containing ULP1-like sequences in rice. The discovery of these MULEs in melon and Arabidopsis, and the existence of similar elements in rice and maize, suggest that a proteolytic function may be important for this subset of the MULE transposable elements. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Nucleotide sequence data reported are available in the GenBank database under the accession number AY524004.  相似文献   

6.
Systematic searches using the complete genome sequence of rice (Oryza sativa) identified OsSUS7, a new member of the rice sucrose synthase (OsSUS) gene family, which shows only nine single nucleotide substitutions in the OsSUS5 coding sequence. Comparative genomic analysis revealed that the synteny between OsSUS5 and OsSUS7 is conserved, and that significant numbers of transposable elements are scattered at both loci. In particular, a 17.6-kb genomic region containing transposable elements was identified in the 5′ upstream sequence of the OsSUS7 gene. GFP fusion experiments indicated that OsSUS5 and OsSUS7 are largely associated with the plasma membrane and partly with the cytosol in maize mesophyll protoplasts. RT-PCR analysis and transient expression assays revealed that OsSUS5 and OsSUS7 exhibit similar expression patterns in rice tissues, with the highest expression evident in roots. These results suggest that two redundant genes, OsSUS5 and OsSUS7, evolved via duplication of a chromosome region and through the transposition of transposable elements.  相似文献   

7.
8.
Two maize genes, Zm 1 and Zm 38, related to the regulatory anthocyanin gene C1 were analyzed molecularly and used for fusion constructs in transient domain swapping experiments with the C1 wild-type gene. It was shown that both genes (Zm 1 and Zm 38) influence the expression of the A1 locus, a target gene for C1. Zm 1 activates the A1 promoter, however it does not turn on the whole anthocyanin pathway. The Zm 38 gene product shows functions similar to C1-I, a dominant inhibitor of the C1 wild-type gene. Concerning the trans-inhibition by C1-I two effects seem to be involved, competition for binding and formation of heterodimers. Further analysis of C1 function was carried out by a fine structure analysis of C1 mutants induced by the insertion and excision of transposable elements. These experiments indicate that for the activating domain of the protein, the formation of an alpha helix seems to be more important than a high negative charge.  相似文献   

9.
10.
11.
12.
We mapped two loci for ADP-ribosylation factor homologues (ARF1, ARF2) and two loci for cysteine proteinase inhibitors (oryzacystatin-I and -II: OCI, OCII) by linkage analysis of restriction fragment length polymorphism loci in rice (Oryza sativa L.) genomic DNAs using their cDNAs as probes.Oc-1 andArf-2 were found to be closely located to each other on chromosome 1, whileOc-2 andArf-1,both found on chromosome 5, were also located close to each other. The map distances are about 2 cM in both pairs. In each chromosome, theArf locus was located about 27 cM from that of the aldolase gene (Ald-2 in chromosome 1 andAld-1 in chromosome 5). These three genes are in the same order,Ald-Arf-Oc, but in opposite orientations relative to the distal ends of the linkage group. The presence of two sets of three linked genes on chromosomes 1 and 5 strongly suggests a structural similarity of the blocks of the two chromosomes, which probably reflects duplication of the segment. A recent investigation by other workers has shown that these rice blocks correspond to two regions in maize chromosomes 8 and 6, that have previously been shown to share many duplicated nucleotide sequences. It is therefore very likely that the duplication of the region occurred before the divergence of rice and maize during the evolution of the subfamilies of the grasses (Gramineae). In view of a recently discovered possible structural similarity between the small GTP-binding protein superfamily, which includesArf andras proteins, and the cystatin family, the close linkage ofOc andArf loci found in the present study suggests a possible cluster of genes related to the small GTP-binding proteins.  相似文献   

13.
14.
15.
Some genes involved in anthocyanin biosynthesis in Zea mays are duplicated and differentially expressed. From the analysis of the A1 gene (dihydroflavonol 4-reductase), which is involved in this pathway, no molecular evidence for gene duplication was known to date. Isolation and analysis of A1 homologous genomic clones revealed the presence of a second A1 gene in maize and also two copies of the gene in Teosinte guerrero. The duplicated genes are structurally very similar and, at least in maize, the second gene is expressed.  相似文献   

16.
Summary cDNA clones were isolated from tissue specific cDNA libraries of barley and maize using as a probe the cDNA of the maize gene C1, a regulator of anthocyanin gene expression. C1-related homology for all of the four cDNAs characterized by sequence analysis is restricted to the N-terminal 120 amino acids of the putative proteins. This region shows striking homology to the N-proximal domain of the myb oncoproteins from vertebrates and invertebrates. Within the myb proto-oncogene family this part of the respective gene products functions as a DNA binding domain. Acidic domains are present in the C-proximal protein segments. Conservation of these sequences, together with the genetically defined regulator function of the C1 gene product, suggest that myb-related plant genes code for trans-acting factors which regulate gene expression in a given biosynthetic pathway.  相似文献   

17.
18.
The chalcone synthase is a key enzyme that catalyses the first dedicated reaction of the flavonoid pathway in higher plants. The chs gene and its protein product in rice has been investigated. The presence of a chalcone synthase (CHS) protein in rice seedlings and its developmental stage-specific expression has been demonstrated by western analysis. The chalcone synthase of rice was found to be immunologically similar to that of maize. A rice cDNA clone, Os-chs cDNA, encoding chalcone synthase, isolated from a leaf cDNA library of an indica rice variety Purpleputtu has been mapped to the centromeric region of chromosome 11 of rice. It was mapped between RFLP markers RG2 and RG103. RG2 is the nearest RFLP marker located at a genetic distance of 3.3 cM. Some segments of chromosome 11 of rice including chs locus are conserved on chromosome 4 of maize. The markers, including chs locus on chromosome 11 of rice are located, though not in the same order, on chromosome 4 of maize. Genetic analysis of purple pigmentation in two rice lines, Abhaya and Shyamala, used in the present mapping studies, indicated the involvement of three genes, one of which has been identified as a dominant inhibitor of leaf pigmentation. The Os-chs cDNA shows extensive sequence homology, both for DNA and protein (deduced), to that of maize, barley and also to different monocots and dicots.  相似文献   

19.
20.
Miniature-inverted repeat transposable elements (MITEs) are abundantly repeated in plant genomes and are especially found in genic regions where they could contribute regulatory elements for gene expression. We describe with molecular and cytological tools the first MITE family reported in pearl millet: Tuareg. It was initially detected in the pearl millet ortholog of Teosinte-branched1, an important developmental gene involved in the domestication of maize. The Tuareg family was amplified recently in the pearl millet genome and elements were found more abundant in wild than in domesticated plants. We found that they shared similarity in their terminal repeats with the previously described mPIF MITEs and that they are also present in other Pennisetum species, in maize and more distantly related grasses. The Tuareg family may be part of MITEs activated by PIF-like transposases and it could have been mobile since pearl millet domestication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. O. Robin contributed the FISH and fiber-FISH hybridizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号