首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides which should be generated from the neuropeptide FF (NPFF) precursor were identified in a neuronal (human neuroblastoma SH-SY5Y) cell line and in COS-7 cells after transient transfection of the human proNPFFA cDNA and were compared with those detected in the mouse spinal cord. After reverse-phase high performance liquid chromatography of soluble material, NPFF-related peptides were immunodetected with antisera raised against NPFF and identified by using on-line capillary liquid chromatography/nanospray ion trap tandem mass spectrometry. Neuronal and non-neuronal cells generated different peptides from the same precursor. In addition to NPFF, SQA-NPFF (Ser-Gln-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) and NPAF were identified in the human neuroblastoma while only NPFF was clearly identified in COS-7 cells. In mouse, in addition to previously detected NPFF and NPSF, SPA-NPFF (Ser-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide), the homologous peptide of SQA-NPFF, were characterized. These data on intracellular processing of proNeuropeptide FFA are discussed in regard to the known enzymatic processing mechanisms.  相似文献   

2.
[(125)I]EYF ([(125)I]EYWSLAAPQRFamide), a new radioiodinated probe derived from a peptide present in the rat Neuropeptide FF precursor (EFWSLAAPQRFamide, EFW-NPSF) was synthesized and its binding characteristics investigated on sections of the rat spinal cord and on membranes of mouse olfactory bulb. In both tissues, [(125)I]EYF binding was saturable and revealed a very high affinity interaction with a single class of binding sites in rat and mouse (K(D) = 0.041 and 0.019 nM, respectively).Competition studies showed that [(125)I]EYF bound to one class of binding sites exhibiting a high affinity for all the different peptides the precursor could generate (NPA-NPFF, SPA-NPFF, NPFF, EFW-NPSF, QFW-NPSF) with the exception of NPSF which displayed a low affinity.Autoradiographic studies demonstrated that [(125)I]EYF binding sites were fully inhibited by a synthetic Neuropeptide FF agonist (1DMe) in all areas of the rat brain. The density of [(125)I]EYF binding sites was high in the intralaminar thalamic nuclei, the parafascicular thalamic nucleus and in the superficial layers of the dorsal horn.Non specific binding reached 5-10% of the total binding in all brain areas. Similarly, in mouse brain experiments, the non-specific binding was never superior to 10%.These findings demonstrate that putative neuropeptides generated by the Neuropeptide FF precursor and containing the NPFF or NPSF sequences should bind to the same receptor. Furthermore, these data indicate that [(125)I]EYF is a useful radiolabeled probe to investigate the NPFF receptors; its major advantages being its high affinity and the very low non-specific binding it induces.  相似文献   

3.
Neuropeptide FF and related synthetic amidated peptides have been shown to elicit sustained anti-nociceptive responses and potently augment spinal anti-nociceptive actions of spinal morphine in tests of thermal and mechanical nociception. Recent studies have described the occurrence of another octapeptide, neuropeptide SF (NPSF) in the spinal cord and the cerebrospinal fluid and demonstrated its affinity for the NPFF receptors. This study examined the effects of NPSF and two putative precursor peptides, EFW-NPSF and NPAF, on the spinal actions of morphine in normal and opioid tolerant rats using the tailflick and pawpressure tests. In normal rats, NPSF demonstrated weak intrinsic activity but sub-effective doses of the peptide significantly increased the magnitude and duration of spinal morphine anti-nociception in both tests. A low-dose of NPSF also augmented the spinal actions of a delta receptor agonist, deltorphin. The morphine-potentiating effect of NPSF was shared by EFW-NPSF and the octadecapeptide NPAF. In animal rendered tolerant by continuous intrathecal infusion of morphine for 6 days, low dose NPSF itself elicited a significant anti-nociceptive response and potently increased morphine-induced response in both tests. In animals made tolerant by repeated injections of intrathecal morphine, administration of NPSF, EFW-NPSF, and NPAF with morphine reversed the loss of the anti-nociceptive effect and restored the agonist potency. The results demonstrate that in normal animals NPSF and related peptides exert strong potentiating effect on morphine anti-nociception at the spinal level and in tolerant animals these agents can reverse the loss of morphine potency.  相似文献   

4.
NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests.  相似文献   

5.
Yang HY  Iadarola MJ 《Peptides》2006,27(5):943-952
The possible roles of the NPFF system in pain processing are summarized from the viewpoints of (1) biological activities of NPFF, (2) anatomical distribution of NPFF and its receptor(s) and (3) the regulation of NPFF and receptor(s) in animal models of pain. NPFF and NPFF analogues were found to have analgesic, pronociceptive and morphine modulating activities. Since the isolation of NPFF, several other RF-NH2 peptides have been identified and some of them were found to have nociceptive or morphine modulating activity. Depending on the pharmacological doses and locations of administration, NPFF may exhibit the biological activities of other structurally related RF-NH2 peptides thus complicating NPFF bioactivity studies and their interpretation. Acid sensing ion channels were found to respond to RF-NH2 peptides including NPFF, raising the possibility that interaction of NPFF and acid sensing ion channels can modulate nociceptive activity. NPFF and NPFF receptor mRNAs are highly expressed and localized in the superficial layers of the dorsal cord, the two genes are also in dorsal root ganglia though at much lower level. The spinal NPFF system is up-regulated by peripheral inflammation in the rat. Furthermore, immunohistochemically, NPFF receptor 2-protein was demonstrated to be increased in the primary afferents in the spinal cord of rats with peripheral inflammation. Regulation and localization of spinal NPFF systems, taken together with the analgesic bioactivity of intrathecally administered NPFF, strongly suggest involvement of spinal NPFF system in pain processing.  相似文献   

6.
Abstract: Neuropeptide FF (NPFF), an FMRFamide-like peptide with antiopioid properties, inhibits morphine-induced analgesia but also produces hyperalgesia. In the present study, the mechanisms of NPFF release were investigated in an in vitro superfusion system with rat spinal cord slices. The opening of voltage-sensitive Na+ channels with veratridine (20 µ M ) induced calcium-dependent NPFF release, which was abolished by tetrodotoxin (1 µ M ), suggesting that NPFF release depends on nerve impulse activity. We also showed that NPFF release was a function of the extent of depolarization and was calcium dependent. The 30 m M K+-induced release was blocked by Co2+ or Ni2+ (2.5 m M ) but was unaffected by Ca2+ channel blockers of the L type—Cd2+ (100 µ M ), nifedipine or nimodipine (10 µ M ), diltiazem (20 µ M ), or verapamil (50 µ M )—or the N type—ω-conotoxin GVIA (1 µ M ). In contrast, ω-agatoxin IVA (1 µ M ) led to a 65% reduction in NPFF release, suggesting that P-type Ca2+ channels play a prominent role. The 35% remaining release resulted from activation of an unknown subtype. The NPFF-like material in superfusates recognized spinal NPFF receptors, suggesting that NPFF release in the spinal cord has a physiological role.  相似文献   

7.
8.
Neuropeptide FF (NPFF) precursors from different species contain at least three known neuropeptides, i.e. FF (FLFQPQRF-NH(2)), AF (AGEGLSSPFWSLAAPQR-NH(2)) and SF (SLAAPQRF-NH(2)). We demonstrate that the rat NPFF precursor contains another bioactive sequence, NAWGPWSKEQLSPQA, spanning between positions 85 and 99. Synthetic NPFF precursor (85-99) (10 and 20 nmol, i.c.v.) blocked the expression of conditioned place preference induced by morphine (5 mg/kg, s.c.). This peptide alone (10 and 20 nmol, i.c.v.) had no influence on the baseline latency of a nociceptive reaction but reversed the antinociceptive activity of morphine (5 mg/kg, s.c.) in the tail-immersion test in rats. These data suggest the existence of a novel bioactive cryptic peptide within an already known NPFF precursor.  相似文献   

9.
Urotensin II (UII) has been reported as the most potent known vasoconstrictor. While rat and mouse orthologs of UII precursor protein have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack typical processing sites for their mature peptides. In the present study, we isolated a novel peptide, UII-related peptide (URP), from the extract of the rat brain as the sole immunoreactive substance to anti-UII antibody; the amino acid sequence of the peptide was determined as ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and revealed that the sequences of mouse and human URP peptides are the same as that for rat URP. Prepro-URP gene is expressed in several rat tissues such as those of the thymus, spleen, testis, and spinal cord, although with lower levels than the prepro-UII gene. In the human, the prepro-URP gene is expressed comparably to prepro-UII in several tissues except the spinal cord. URP was found to bind and activate the human or rat UII receptors (GPR14) and showed a hypotensive effect when administered to anesthetized rats. These results suggest that URP is the endogenous and functional ligand for UII receptor in the rat and mouse, and possibly in the human. We also describe the preparation of specific monoclonal antibodies raised against UII peptide and the establishment of a highly sensitive enzyme immunoassay system for UII peptides.  相似文献   

10.
Several neuropeptide FF (NPFF)-related peptides, known as modulators of the opioid system, have been previously characterized in bovine and rodent brain. Reverse-phase high pressure liquid chromatography (HPLC) fractions of a human with normal pressure hydrocephalus cerebrospinal fluid (CSF), co-migrating with NPFF-related synthetic peptides, were characterized by capillary HPLC coupled on-line to nanospray ion trap tandem mass spectrometry. Two peptides present in the pro-NPFF(A) precursor, NPAF (AGEGLNSQFWSLAAPQRF-NH2) and NPSF (SLAAPQRF-NH2), were identified. The monitoring of NPFF-related peptides in human CSF can be helpful to understand their roles in pain sensitivity.  相似文献   

11.
A structure-activity study was carried out to determine the importance of the C-terminal amino acids of the octapeptide Neuropeptide FF (NPFF) in binding and agonistic activity. Affinities of NPFF analogues were tested toward NPFF receptors of the rat spinal cord and the human NPFF2 receptors transfected in CHO cells. The activities of these analogues were evaluated by their ability to both inhibit adenylate cyclase in NPFF2 receptor transfected CHO cells and to reverse the effect of nociceptin on acutely dissociated rat dorsal raphe neurons. The substitutions of Phenylalanine8 by a tyrosine, phenylglycine or homophenylalanine were deleterious for high affinity. Similarly, the replacement of Arginine7 by a lysine or D.Arginine induces a loss in affinity. The pharmacological characterization showed that the presence of the amidated Phe8 and Arg7 residues are also extremely critical for activation of anti-opioid effects on dorsal raphe neurons. The sequence of the C-terminal dipeptide seems also to be responsible for the high affinity and the activity on human NPFF2 receptors. The results support the view that a code messaging the molecular interaction toward NPFF-receptors is expressed in the C-terminal region of these peptides but the N-terminal segment is important to gain very high affinity.  相似文献   

12.
The two mammalian neuropeptides NPFF and NPAF have been shown to have important roles in nociception, anxiety, learning and memory, and cardiovascular reflex. Two receptors (FF1 and FF2) have been molecularly identified for NPFF and NPAF. We have now characterized a novel gene designated NPVF that encodes two neuropeptides highly similar to NPFF. NPVF mRNA was detected specifically in a region between the dorsomedial and ventromedial hypothalamic nuclei. NPVF-derived peptides displayed higher affinity for FF1 than NPFF-derived peptides, but showed poor agonist activity for FF2. Following intracerebral ventricular administration, a NPVF-derived peptide blocked morphine-induced analgesia more potently than NPFF in both acute and inflammatory models of pain. In situ hybridization analysis revealed distinct expression patterns of FF1 and FF2 in the rat central nervous system. FF1 was broadly distributed, with the highest levels found in specific regions of the limbic system and the brainstem where NPVF-producing neurons were shown to project. FF2, in contrast, was mostly expressed in the spinal cord and some regions of the thalamus. These results indicate that the endogenous ligands for FF1 and FF2 are NPVF- and NPFF-derived peptides, respectively, and suggest that the NPVF/FF1 system may be an important part of endogenous anti-opioid mechanism.  相似文献   

13.
Sol JC  Roussin A  Proto S  Mazarguil H  Zajac JM 《Peptides》1999,20(10):1219-1227
Degradation of neuropeptide FF (NPFF) and SQA-neuropeptide FF (SQA-NPFF) by mouse brain sections was investigated by using capillary electrophoresis with UV detection for the separation and the identification of the degradation products. The half disappearance time of SQA-NPFF was 2-fold greater than that of NPFF. NPFF was cleaved preferentially into an inactive metabolite, Gln-Arg-Phe-NH2, in the cerebrum slices. SQA-NPFF was hydrolyzed by an unidentified degrading activity to generate NPFF, and NPFF accounted for a larger part of SQA-NPFF degradation in the hindbrain and cervical spinal cord than in the cerebrum slices. These findings suggest that, depending on the brain regions, NPFF produced from SQA-NPFF could prolong the biologic effects of SQA-NPFF.  相似文献   

14.
Okuda-Ashitaka E  Ito S 《Peptides》2000,21(7):1101-1109
We identified a novel neuropeptide and named it "nocistatin." Its presence was expected by analysis of the precursor for the neuropeptide nociceptin or orphanin FQ (Noc/OFQ), previously identified as an endogenous ligand for the orphan opioid receptor-like receptor. The precursor prepronociceptin/orphanin FQ (ppNoc/OFQ) comprises at least two bioactive peptides, nocistatin and Noc/OFQ. Noc/OFQ is involved in a broad range of pharmacological actions in various tissues from the central nervous system to the periphery. In pain transmission, Noc/OFQ is reported to have different effects including nociception, no effect, and analgesia, depending on the animal species tested, doses, route of administration, and so on. We found that intrathecal administration of Noc/OFQ induced pain responses including allodynia and hyperalgesia. Simultaneous administration of nocistatin blocked the allodynia and hyperalgesia induced by Noc/OFQ, whereas anti-nocistatin antibody decreased the threshold for the Noc/OFQ-induced allodynia. The endogenous heptadecapeptide nocistatin was isolated from bovine brains and recently identified in mouse, rat, and human brain and in human cerebrospinal fluid. Although human, rat and mouse ppNoc/OFQ produced larger respective counterparts with 30, 35, and 41 amino acid residues, all peptides showed the antinociceptive activity. This activity was ascribed to the carboxyl-terminal hexapeptide of nocistatin, Glu-Gln-Lys-Gln-Leu-Gln, which is conserved beyond species. Nocistatin also attenuated the allodynia and hyperalgesia evoked by prostaglandin E(2) and the inflammatory hyperalgesia induced by formalin or carrageenan/kaolin, and reversed the Noc/OFQ-induced inhibition of morphine analgesia at picogram doses. Furthermore, nocistatin counteracted the impairment of learning and memory induced by Noc/OFQ or scopolamine. Nocistatin is widely present in the spinal cord and brain. Although nocistatin did not bind to the Noc/OFQ receptor, it bound to the membrane of mouse brain and spinal cord with a high affinity. Nocistatin is a novel bioactive peptide produced from the same precursor as Noc/OFQ, and it plays important roles in the regulation of pain transmission and learning and memory processes in the central nervous system.  相似文献   

15.
Neuropeptide FF (NPFF) is an octapeptide belonging to an extended family of RF amide peptides that have been implicated in a wide variety of physiological functions in the brain. NPFF and its receptors are abundantly expressed in the rat brain and spinal cord including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we sought to examine the effects of NPFF on GABAergic inhibitory synaptic input to magnocellular neurosecretory cells (MNCs) of the PVN, which secrete the neurohormones, vasopressin and oxytocin from their terminals in the neurohypophysis. Whole cell patch clamp recordings under voltage clamp conditions were performed from PVN MNCs in the brain slice. Bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) were isolated in the presence of glutamate receptor blockers. In tetrodotoxin, NPFF (5 microM) caused an increase in frequency, but not amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in MNCs indicating a presynaptic locus of action for this peptide. Intracerebroventricular application of NPFF resulted in an activation of GABAergic neurons located adjacent to the PVN as revealed by immunohistochemistry for Fos protein and in situ hybridization for glutamic acid decarboxylase (GAD67) mRNA. Based on these observations we conclude that NPFF facilitates inhibitory input to MNCs of the PVN via GABAergic interneurons located in immediate vicinity of the nucleus. These findings provide a cellular and anatomic basis for the NPFF-induced inhibition of vasopressin release has been reported consequent to hypovolemia and hyperosmolar stimulation.  相似文献   

16.
Abstract: Using a radioligand binding assay, we examined ionic modulation and G protein coupling of neuropeptide FF(NPFF) receptors in membranes of rat brain and spinal cord. We found that NaCl (but not KCl or LiCl) and MgCl2 increased specific 125I-YLFQPQRFamide (125I-Y8Fa) binding to NPFF receptors in both tissues in a dose-dependent manner, with optimal conditions being 60 m M NaCl and 1 m M MgCl2. Guanine nucleotides dose-dependently inhibited specific 125I-Y8Fa binding to rat brain and spinal cord membranes with maximal effects of 64 ± 6 and 71 ± 2%, respectively. The order of potency was nonhydrolyzable GTP analogues > GTP GDP > GMP, ATP. The guanine nucleotide inhibition was observed in the absence and presence of NaCl and MgCl2. The mechanism of inhibition in spinal cord membranes appeared to be a reduction in the number of NPFF receptors; in one experiment, control KD and Bmax values were 0.068 n M and 7.2 fmol/mg of protein, respectively, and with 0.1 μ M guanylylimidodiphosphate the respective values were 0.081 n M and 4.9 fmol/mg, a 32% reduction in receptor number. Similar results were obtained with guanosine 5'-0-(3-thiotriphosphate). Our data suggest that 125I-Y8Fa binding sites in rat CNS are G protein-coupled NPFF receptors regulated by GTP and cations.  相似文献   

17.
Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5′ untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat.  相似文献   

18.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

19.
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.  相似文献   

20.
Atrial natriuretic peptide in lymphoid organs of various species   总被引:1,自引:0,他引:1  
1. Evidence for the occurrence of atrial natriuretic peptide (ANP) in various lymphoid organs of different species (rat, mouse, pig, chicken) is provided. 2. ANP precursor material (1-126) as well the physiologically active ANP (99-126), were identified by chromatographic analysis and RIA in extracts of thymus, spleen and lymph nodes of rat, mouse and pig. 3. mRNA coding for ANP was demonstrated both in the thymus and in isolated thymocytes of these species. Furthermore, mRNA for ANP was detected in spleen and lymph nodes (rat and pig). 4. The bursa of Fabricius, thymus glands and spleen of chickens were also shown to express mRNA coding for ANP. 5. These findings provide a firm basis for a link of ANP to the immune system, a novel aspect of possible biological functions of this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号