首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify molecular players implicated in cytokinesis and division plane determination, the Arabidopsis thaliana genome was explored for potential cytokinesis genes. More than 100 open reading frames were selected based on similarity to yeast and animal cytokinesis genes, cytoskeleton and polarity genes, and Nicotiana tabacum genes showing cell cycle-controlled expression. The subcellular localization of these proteins was determined by means of GFP tagging in tobacco Bright Yellow-2 cells and Arabidopsis plants. Detailed confocal microscopy identified 15 proteins targeted to distinct regions of the phragmoplast and the cell plate. EB1- and MAP65-like proteins were associated with the plus-end, the minus-end, or along the entire length of microtubules. The actin-binding protein myosin, the kinase Aurora, and a novel cell cycle protein designated T22, accumulated preferentially at the midline. EB1 and Aurora, in addition to other regulatory proteins (homologs of Mob1, Sid1, and Sid2), were targeted to the nucleus, suggesting that this organelle operates as a coordinating hub for cytokinesis.  相似文献   

2.
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.  相似文献   

3.
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.  相似文献   

4.
Tse YC  Lo SW  Hillmer S  Dupree P  Jiang L 《Plant physiology》2006,142(4):1442-1459
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5-10 microg mL(-1)) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50-100 microg mL(-1)) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.  相似文献   

5.
Cytokinesis in plants involves both the formation of a new wall and the partitioning of organelles between the daughter cells. To characterize the cellular changes that accompany the latter process, we have quantitatively analyzed the cell cycle-dependent changes in cell architecture of shoot apical meristem cells of Arabidopsis thaliana. For this analysis, the cells were preserved by high-pressure freezing and freeze-substitution techniques, and their Golgi stacks, multivesicular bodies, vacuoles and clathrin-coated vesicles (CCVs) characterized by means of serial thin section reconstructions, stereology and electron tomography techniques. Interphase cells possess ∼35 Golgi stacks, and this number doubles during G2 immediately prior to mitosis. At the onset of cytokinesis, the stacks concentrate around the periphery of the growing cell plate, but do not orient towards the cell plate. Interphase cells contain ∼18 multivesicular bodies, most of which are located close to a Golgi stack. During late cytokinesis, the appearance of a second group of cell plate-associated multivesicular bodies coincides with the onset of CCV formation at the cell plate. During this period a 4× increase in CCVs is paralleled by a doubling in number and a 4× increase in multivesicular bodies volume. The vacuole system also undergoes major changes in organization, size, and volume, with the most notable change seen during early telophase cytokinesis. In particular, the vacuoles form sausage-like tubular compartments with a 50% reduced surface area and an 80% reduced volume compared to prometaphase cells. We postulate that this transient reduction in vacuole volume during early telophase provides a means for increasing the volume of the cytosol to accommodate the forming phragmoplast microtubule array and associated cell plate-forming structures.  相似文献   

6.
We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.  相似文献   

7.
During plant cytokinesis membrane vesicles are efficiently delivered to the cell-division plane, where they fuse with one another to form a laterally expanding cell plate. These membrane vesicles were generally believed to originate from Golgi stacks. Recently, however, it was proposed that endocytosis contributes substantially to cell-plate formation. To determine the relative contributions of secretory and endocytic traffic to cytokinesis, we specifically inhibited either or both trafficking pathways in Arabidopsis. Blocking traffic to the division plane after the two pathways had converged at the trans-Golgi network disrupted cytokinesis and resulted in binucleate cells, whereas impairment of endocytosis alone did not interfere with cytokinesis. By contrast, inhibiting ER-Golgi traffic by eliminating the relevant BFA-resistant ARF-GEF caused retention of newly synthesized proteins, such as the cytokinesis-specific syntaxin KNOLLE in the ER, and prevented the formation of the partitioning membrane. Our results suggest that during plant cytokinesis, unlike animal cytokinesis, protein secretion is absolutely essential, whereas endocytosis is not.  相似文献   

8.
In many brown algae, cytokinesis is accomplished through the centrifugal expansion of the membrane structure formed by the fusion of Golgi vesicles and flat cisternae. In contrast, it has been reported that cytokinesis in Sphacelaria rigidula progresses centripetally by adding Golgi vesicles and flat cisternae to cleaving furrows of the plasma membrane. The reason why this cytokinetic pattern was observed only in Sphacelaria species is unknown. In either cytokinesis pattern, a plate-like actin structure (the actin plate) coincides with the cytokinetic plane between the daughter nuclei. However, it is unclear how the actin plate is related to cytokinesis progression. In this study, we re-examined cytokinesis in the apical cells of S. rigidula using transmission electron microscopy. Double staining of the actin plate and the developing membrane was followed by fluorescence microscopy analysis to determine the relationship between these two formations. The results showed that cytokinesis in S. rigidula, as in many brown algae, was completed by centrifugal growth of the new cell partition membrane. A furrow of the plasma membrane was observed at the beginning of cytokinesis; however, further invagination did not occur. The actin plate arose at the center of the cytokinetic plane before membrane fusion and extended parallel to the expansion of the new cell partition membrane. When cytokinesis was slow due to insufficient Golgi vesicle supply to the cytokinetic plane in the cells under brefeldin A treatment, the extension of the actin plate was also suspended. In this study, the spatiotemporal relationship between the occurrence and expansion of the actin plate and the new cell partition membrane was revealed. These observations indicate that the actin plate might promote membrane fusion or lead to the growth of a new cell partition membrane.  相似文献   

9.
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.  相似文献   

10.
We have followed the redistribution of Golgi stacks during mitosis and cytokinesis in living tobacco BY-2 suspension culture cells by means of a green fluorescent protein-tagged soybean alpha-1,2 mannosidase, and correlated the findings to cytoskeletal rearrangements and to the redistribution of endoplasmic reticulum, mitochondria, and plastids. In preparation for cell division, when the general streaming of Golgi stacks stops, about one-third of the peripheral Golgi stacks redistributes to the perinuclear cytoplasm, the phragmosome, thereby reversing the ratio of interior to cortical Golgi from 2:3 to 3:2. During metaphase, approximately 20% of all Golgi stacks aggregate in the immediate vicinity of the mitotic spindle and a similar number becomes concentrated in an equatorial region under the plasma membrane. This latter localization, the "Golgi belt," accurately predicts the future site of cell division, and thus forms a novel marker for this region after the disassembly of the preprophase band. During telophase and cytokinesis, many Golgi stacks redistribute around the phragmoplast where the cell plate is formed. At the end of cytokinesis, the daughter cells have very similar Golgi stack densities. The sites of preferential Golgi stack localization are specific for this organelle and largely exclude mitochondria and plastids, although some mitochondria can approach the phragmoplast. This segregation of organelles is first observed in metaphase and persists until completion of cytokinesis. Maintenance of the distinct localizations does not depend on intact actin filaments or microtubules, although the mitotic spindle appears to play a major role in organizing the organelle distribution patterns. The redistribution of Golgi stacks during mitosis and cytokinesis is consistent with the hypothesis that Golgi stacks are repositioned to ensure equal partitioning between daughter cells as well as rapid cell plate assembly.  相似文献   

11.
Phosphoinositides are important regulators of numerous cellular functions. The yeast class III phosphatidylinositol 3-kinase Vps34p, and its human orthologue hVPS34, are implicated in control of several key pathways, including endosome to lysosome transport, retrograde endosome to Golgi traffic, multivesicular body formation, and autophagy. We have identified the Vps34p orthologue in the African trypanosome, TbVps34. Knockdown of TbVps34 expression by RNA interference induces a severe growth defect, with a post-mitotic block to cytokinesis accompanied by a variety of morphological abnormalities. GFP2xFYVE, a chimeric protein that specifically binds phosphatidylinositol 3-phosphate, localizes to the trypanosome endosomal system and is delocalized under TbVps34 RNA interference (RNAi), confirming that TbVps34 is an authentic phosphatidylinositol 3-kinase. Expression of GFP2xFYVE enhances the TbVps34 RNAi-associated growth defect, suggesting a synthetic interaction via competition for phosphatidylinositol 3-phosphate-binding sites with endogenous FYVE domain proteins. Endocytosis of a fluid phase marker is unaffected by TbVps34 RNAi, but receptor-mediated endocytosis of transferrin and transport of concanavalin A to the lysosome are both impaired, confirming a role in membranous endocytic trafficking for TbVps34. TbVps34 knockdown inhibits export of variant surface glycoprotein, indicating a function in exocytic transport. Ultrastructural analysis revealed a highly extended Golgi apparatus following TbVps34 RNAi, whereas expression of the Golgi marker red fluorescent protein-GRASP (Grp1 (general receptor for phosphoinositides-1)-associated scaffold protein) demonstrated that trypanosomes are able to duplicate the Golgi complex but failed to complete segregation during mitosis, despite faithful replication and segregation of basal bodies and the kinetoplast. These observations implicate TbVps34 as having a role in coordinating segregation of the Golgi complex at cell division.  相似文献   

12.
The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin   总被引:11,自引:0,他引:11  
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.  相似文献   

13.
Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans‐Golgi network, plasma membrane, apoplast, late endosome/multivesicular bodies (MVB), transitory late endosome/ tonoplast, tonoplast, plastids, mitochondria, peroxisomes, autophagosomes, plasmodesmata, actin, microtubules, periarbuscular membrane (PAM) and periarbuscular apoplastic space (PAS) and expressed them from the constitutive AtUBQ10 promoter and the AM symbiosis‐specific MtBCP1 promoter. All marker constructs showed the expected expression patterns and sub‐cellular locations in M. truncatula root cells. As a demonstration of their utility, we used several markers to investigate AM symbiosis where root cells undergo major cellular alterations to accommodate their fungal endosymbiont. We demonstrate that changes in the position and size of the nuclei occur prior to hyphal entry into the cortical cells and do not require DELLA signaling. Changes in the cytoskeleton, tonoplast and plastids also occur in the colonized cells and in contrast to previous studies, we show that stromulated plastids are abundant in cells with developing and mature arbuscules, while lens‐shaped plastids occur in cells with degenerating arbuscules. Arbuscule development and secretion of the PAM creates a periarbuscular apoplastic compartment which has been assumed to be continuous with apoplast of the cell. However, fluorescent markers secreted to the periarbuscular apoplast challenge this assumption. This marker resource will facilitate cell biology studies of AM symbiosis, as well as other aspects of legume biology.  相似文献   

14.
X Gu  D P Verma 《The Plant cell》1997,9(2):157-169
The cell plate is formed by the fusion of Golgi apparatus-derived vesicles in the center of the phragmoplast during cytokinesis in plant cells. A dynamin-like protein, phragmoplastin, has been isolated and shown to be associated with cell plate formation in soybean by using immunocytochemistry. In this article, we demonstrate that similar to dynamin, phragmoplastin polymerizes to form oligomers. We fused soybean phragmoplastin with the green fluorescence protein (GFP) and introduced it into tobacco BY-2 cells to monitor the dynamics of early events in cell plate formation. We demonstrate that the chimeric protein is functional and targeted to the cell plate during cytokinesis in transgenic cells. GFP-phragmoplastin was found to appear first in the center of the forming cell plate, and as the cell plate grew outward, it redistributed to the growing margins of the cell plate. The redistribution of phragmoplastin may require microtubule reorganization because the microtubule-stabilizing drug taxol inhibited phragmoplastin redistribution. Our data show that throughout the entire process of cytokinesis, phragmoplastin is concentrated in the area in which membrane fusion is active, suggesting that phragmoplastin participates in an early membrane fusion event during cell plate formation. Based on the dynamics of GFP-phragmoplastin, it appears that the process of cell plate formation is completed in two phases. The first phase is confined to the cylinder of the phragmoplast proper and is followed by a second phase that deposits phragmoplast vesicles in a concentric fashion, resulting in a ring of fluorescence, with the concentration of vesicles being higher at the periphery. In addition, overexpression of GFP-phragmoplastin appears to act as a dominant negative, slowing down the completion of cell plate formation, and often results in an oblique cell plate. The latter appears to uncouple cell elongation from the plane of cell division, forming twisted and elongated cells with longitudinal cell divisions.  相似文献   

15.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

16.
S. Sonobe  N. Nakayama  T. Shimmen  Y. Sone 《Protoplasma》2000,213(3-4):218-227
Summary Immunofluorescence microscopy using an antibody against xyloglucan (XG) revealed its dynamics during the cell cycle. In interphase tobacco BY-2 cells, punctate and scattered fluorescence was observed throughout the cytoplasm. Colocalization of such signals with cortical microtubules (MTs) was clearly observed on the membrane ghosts. They were also associated and accumulated on MT bundles of the preprophase band. Treatment of protoplasts with cytochalasin B prior to the preparation of the ghosts had no effect on the pattern of anti-XG staining, while treatment with propyzamide caused the disappearance of the staining. These results suggest an association of Golgi apparatus and/or Golgi-derived vesicles with MTs. In metaphase cells, the staining was dispersed in the cytoplasm, except in the area occupied by the metaphase spindle. During anaphase, a broad fluorescence band appeared between daughter chromosomes and gradually concentrated at the equatorial plane before formation of the phragmoplast. At telophase, a bright line of fluorescence appeared at the equatorial plane corresponding to the position of the cell plate. The length of the line increased as cytokinesis proceeded. Thus, we showed that immunofluorescence microscopy using anti-XG antibody can be considered as a powerful tool for the analysis of Golgi apparatus and Golgi-derived vesicles containing XG.  相似文献   

17.
BACKGROUND INFORMATION: The actin cytoskeleton forms distinct actin arrays which fulfil their functions during cell cycle progression. Reorganization of the actin cytoskeleton occurs during transition from one actin array to another. Although actin arrays have been well described during cell cycle progression, the dynamic organization of the actin cytoskeleton during actin array transition remains to be dissected. RESULTS: In the present study, a GFP (green fluorescent protein)-mTalin (mouse talin) fusion gene was introduced into suspension-cultured tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow) cells by a calli-cocultivation transformation method to visualize the reorganization of the actin cytoskeleton in vivo during the progression of the cell cycle. Typical actin structures were indicated by GFP-mTalin, such as the pre-prophase actin band, mitotic spindle actin filament cage and phragmoplast actin arrays. In addition, dynamic organization of actin filaments was observed during the progression of the cell from metaphase to anaphase. In late metaphase, spindle actin filaments gradually shrank to the equatorial plane along both the long and short axes. Soon after the separation of sister chromosomes, actin filaments aligned in parallel at the cell division plane, forming a cylinder-like structure. During the formation of the cell plate, one cylinder-like structure changed into two cylinder-like structures: the typical actin arrays of the phragmoplast. However, the two actin arrays remained overlapping at the margin of the centrally growing cell plate, forming an actin wreath. When the cell plate matured further, an actin filament network attached to the cell plate was formed. CONCLUSIONS: Our results clearly describe the dynamic organization of the actin cytoskeleton during mitosis and cytokinesis of a plant cell. This demonstrates that GFP-mTalin-transformed tobacco BY-2 cells are a valuable tool to study actin cytoskeleton functions in the plant cell cycle.  相似文献   

18.
We have localized two cell-wall-matrix polysaccharides, the main pectic polysaccharide, rhamnogalacturonan I (RG-I), and the hemicellulose, xyloglucan (XG), in root-tip and leaf tissues of red clover (Trifolium pratense L.) using immunoelectron microscopy. Our micrographs show that in both leaf and root tissues RG-I is restricted to the middle lamella, with 80–90% of the label associated with the expanded regions of the middle lamella at the corner junctions between cells. Xyloglucan, however, is nearly exclusively located in the cellulose-microfibril-containing region of the cell wall. Thus, these cell-wall-matrix polysaccharides are present in distinct and complementary regions of the cell wall. Our results further show that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides. No label is seen over the endoplasmic reticulum, indicating that synthesis of these complex polysaccharides is restricted to the Golgi. The distribution of RG-I and XG in root-tip cells undergoing cell division was also examined, and it was found that while XG is present in the Golgi stacks and cell plate during cytokinesis, RG-I is virtually absent from the forming cell plate.Abbreviations ER endoplasmic reticulum - RG-I rhamnogalacturonan I - XG xyloglucan  相似文献   

19.
The thecate green flagellate Scherffelia dubia (Perty) Pascher divides within the parental cell wall into two progeny cells. It sheds all four flagella before cell division, and the maturing progeny cells regenerate new walls and flagella. By synchronizing cell division, we observed mitosis, cytokinesis, cell maturation, flagella extension, and cell wall formation via differential interference contrast microscopy of live cells and serial thin‐section EM. Synthesis of thecal and flagellar scales is spatially and temporally strictly separated. Flagellar scales are collected in a pool during late interphase. Before prophase, Golgi stacks divide, flagella are shed, the parental theca separates from the plasma membrane, and flagellar scales are deposited on the plasma membrane near the flagellar bases. At prophase, Golgi bodies start to synthesize thecal scales, continuing into interphase after cytokinesis. During cytokinesis, vesicles containing thecal scales coalesce near the cell posterior, forming a cleavage furrow that is initially oriented slightly diagonal to the longitudinal cell axis but later becomes transverse. After the progeny nuclei have moved into opposite directions, resulting in a “head to tail” orientation of the progeny cells, theca biogenesis is completed and flagellar scale synthesis resumes. Progeny cells emerge through a hole near the posterior end of the parental theca with four flagella of about 8 μm long. The precise timing of flagellar and thecal scale synthesis appears to be an evolutionary adaptation in a scaly green flagellate for the thecal condition, necessary for the evolution of the phycoplast and thus multicellularity in the Chlorophyta.  相似文献   

20.
The Golgi apparatus in plant cells consists of a large number of independent Golgi stack/trans-Golgi network/Golgi matrix units that appear to be randomly distributed throughout the cytoplasm. To study the dynamic behavior of these Golgi units in living plant cells, we have cloned a cDNA from soybean (Glycine max), GmMan1, encoding the resident Golgi protein alpha-1,2 mannosidase I. The predicted protein of approximately 65 kD shows similarity of general structure and sequence (45% identity) to class I animal and fungal alpha-1,2 mannosidases. Expression of a GmMan1::green fluorescent protein fusion construct in tobacco (Nicotiana tabacum) Bright Yellow 2 suspension-cultured cells revealed the presence of several hundred to thousands of fluorescent spots. Immuno-electron microscopy demonstrates that these spots correspond to individual Golgi stacks and that the fusion protein is largely confined to the cis-side of the stacks. In living cells, the stacks carry out stop-and-go movements, oscillating rapidly between directed movement and random "wiggling." Directed movement (maximal velocity 4.2 microm/s) is related to cytoplasmic streaming, occurs along straight trajectories, and is dependent upon intact actin microfilaments and myosin motors, since treatment with cytochalasin D or butanedione monoxime blocks the streaming motion. In contrast, microtubule-disrupting drugs appear to have a small but reproducible stimulatory effect on streaming behavior. We present a model that postulates that the stop-and-go motion of Golgi-trans-Golgi network units is regulated by "stop signals" produced by endoplasmic reticulum export sites and locally expanding cell wall domains to optimize endoplasmic reticulum to Golgi and Golgi to cell wall trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号