首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

2.
Ionophore A23187-mediated net influx of Ca2+ in ATP-depleted human red cells was studied as a function of the pH and the proton concentration gradient across the membranes. Utilizing the Ca2+-induced increase in K+ conductance of the cell membranes, various CCCP-mediated proton gradients were raised across the membranes of cells suspended in unbuffered salt solutions with different K+ concentrations. In ionophore-mediated equilibrium the concentration ratios of ionized Ca between ATP-depleted, DIDS-treated cells and their suspension medium were equal to the concentration ratios of protons raised to the second power. With no proton concentration gradient across the membranes the net influxes of Ca2+ as a function of pH resembled a titration curve of a weak acid, with half maximal net influx at pH 7.3, at 100 microM extracellular Ca2+. With cellular pH fixed at various values, the net influx of Ca2+ was determined as a function of the proton concentration gradient. A linear relationship between the logarithm of net influx and the difference between extracellular and cellular pH was found at all cellular pH values tested, but the proton concentration gradient acceleration was a function of the cellular pH. Accelerations between 10- and 40- times per unit delta pH were found and net effluxes were correspondingly decreased. The results are discussed in relation to present models of the mechanism of ionophore A23187-mediated Ca2+ transport. The importance of the proton concentration gradient dependency is discussed in relation to the induced oscillations in K+-conductance of human red cell membranes previously reported (Vestergaard-Bogind and Bennekou (1982) Biochim. Biophys. Acta 688, 37-44).  相似文献   

3.
1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.  相似文献   

4.
Initial rates of ionophore-mediated Ca2+ transport across egg phosphatidylcholine bilayers of large unilamellar vesicles were measured using the absorbance change of arsenazo III at 650 nm as an indicator of Ca2+ translocation. A23187 induced the movement of Ca2+ in a 2:1 ionophore: Ca2+ complex, whereas its methyl ester (CH3A23187) and X537A mediated Ca2+ movement in a 1:1 ionophore: Ca2+ complex. The relative potencies of these ionophores in transporting Ca2+ across lipid membranes were A23187 much greater than X537A greater than CH3A23187.  相似文献   

5.
Intracellular uptake of A23187 and the increased release of amylase and lactate dehydrogenase (LDH) accompanying ionophore uptake was studied using dissociated acinar cells prepared from mouse pancreas. Easily detected changes in the fluorescence excitation spectrum of A23187 upon transfer of the ionophore from a Tris-buffered Ringer's to cell membranes were used to monitor A23187 uptake. Uptake was rapid in the absence of extracellular Ca2+ and Mg2+ (t1/2=1 min) and much slower in the presence of Ca2+ or Mg2+ (t1/2=20 min). Cell-associated ionophore was largely intracellular as indicated by fluorescence microscopy, lack of spectral sensitivity to changes in extracellular Ca2+ and Mg2+, and by equivalent interaction of ionophore with membranes of whole and sonicated cells. A23187 (10 micronm) increased amylase release 200% in the presence of extracellular Ca2+ and Mg2+. In the absence of Ca2+ (but in the presence of Mg2+) A23187 did not increase amylase release. A23187 (10 micronm) also produced Ca2+ -dependent cell damage, as judged by increased LDH release, increased permeability to trypan blue, and by disruption of cell morphology. The cell damaging and amylase releasing properties of A23187 were distinguished by their time course and dose-response relationship. A23187 (1 micronm) increased amylase release 140% without increasing LDH release or permeability to trypan blue.  相似文献   

6.
Three aspects of the calcium hypothesis we have proposed previously [Metcalfe, Pozzan, Smith & Hesketh (1980) Biochem. Soc. Symp. 45, 1-26] for the control of mitogenic stimulation of lymphocytes are examined in studies on the mitogenic action of the Ca2+ ionophore A23187 and its effect on cap formation. (1) Pig lymphocytes that were mitogenically stimulated by continuous incubation with 3H-labelled A23187 for 48 h contained between 3 and 15 amol of ionophore per cell. Lymphocytes exposed to 3H-labelled A23187 for 2h before washing the cells and resuspending them in ionophore-free medium were only stimulated mitogenically at 48h if the residual ionophore associated with the cells after washing was in the concentration range 3-15 amol per cell. When the cells were washed repeatedly after 2h incubation with ionophore to reduce the cell-associated ionophore below the critical concentration range, no mitogenic stimulation occurred as a result of short-term exposure to any ionophore concentration. Re-addition of ionophore to within the indicated range of cell-associated concentrations restored mitogenic stimulation at 48h. We conclude that large, short-term Ca2+ fluxes into the cells induced by the ionophore cannot generate a mitogenic signal that commits the cells to enter the cell cycle. (2) Further experiments with the ionophore showed that detectable mitogenic stimulation at 48h required a minimum of 3h exposure to optimal ionophore concentrations, and that maximal stimulation required at least 20h exposure. This is consistent with the view that a prolonged increase in the free cytoplasmic calcium concentration is required to stimulate the maximum proportion of the cells into the cell cycle. (3) Mouse splenic lymphocytes treated for short periods with very high ionophore concentrations (30 microM) in the presence of various external Ca2+ concentrations showed significant inhibition of cap formation of surface immunoglobulin receptors in the range 1-10 microM-Ca2+ in normal or depolarizing medium. We conclude that mitogens at optimal concentrations for the stimulation of lymphocytes do not cause any early increase in the free cytoplasmic Ca2+ concentration above 10 microM.  相似文献   

7.
The role of Ca2+ in the mediation of pepsinogen secretion from frog esophagus was investigated by means of ionophore A23187 and LaCl3. The esophageal mucosa from Asian bullfrog Rana tigerina was mounted in a double-chamber system to preserve its polarity and was incubated in a medium containing 1.5 mM CaCl2. Pepsinogen secreted was measured and expressed as % of total. The basal secretion averaged 3.5%/h. Bethanechol (25 microM), dibutyryl-cAMP (10 mM), ionophore A23187 (30 microM) and 3-isobutyl-1-methylxanthine (0.1 mM) increased the secretion to 8.7, 7.4, 7.1 and 6.8%, respectively. The stimulatory effect of bethanechol and of dibutyryl-cAMP were not affected by removing the exogenous Ca2+ with EGTA. The basal secretion was, however, reduced by 50% when Ca2+ in the incubation medium was lowered to 20 microM. At this low Ca2+ concentration, ionophore A23187 not only lost its stimulatory effect but also diminished the stimulation caused by bethanechol and dibutyryl-cAMP. While LaCl3 at 1 mM had no effect on basal and bethanechol-stimulated secretion, at 10 mM it abolished the stimulation evoked by bethanechol or dibutyryl-cAMP. The conclusions are: (1) both Ca2+ and cAMP are involved in the mediation of pepsinogen secretion from frog esophagus, (2) basal secretion is dependent on extracellular Ca2+, whereas bethanechol-stimulated secretion is not, (3) in the plasma membranes of peptic cells may exist a distinct Ca2+ pool (La3+-and ionophore A23187-sensitive) which is involved in the stimulated pepsinogen secretion.  相似文献   

8.
The interaction between prostaglandin E1 (PGE1) and chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMLP) in cAMP production in guinea pig neutrophils was investigated. Both PGE1 and fMLP increased the cAMP content in neutrophils. At low concentrations of PGE1 (less than 10 nM), the effects of fMLP and PGE1 in stimulating cAMP accumulation were additive, but at high concentrations of PGE1, their effects were synergistic. The effects of PGE1 and Ca2+ ionophore A23187 instead of fMLP on cAMP accumulation were also synergistic. The synergy did not appear to be related to change in cyclic nucleotide phosphodiesterase activity, because it was still marked in the presence of isobutyl-3-methyl-1-xanthine, a phosphodiesterase inhibitor. Studies on the time course of PGE1-induced cAMP accumulation showed that cAMP production ceased within 5 min after the addition of high concentrations of PGE1. The period of cAMP production could not be prolonged by combined treatment with PGE1 and fMLP or Ca2+ ionophore A23187. The synergy was found to be caused through Ca2+-dependent processes, because depletion of the medium of Ca2+ and addition of the Ca2+ antagonist TMB-8 inhibited the synergistic increase in cAMP. Moreover, the calmodulin antagonist W-7 also effectively inhibited the synergistic increase in cAMP. These results suggest that the potentiation of PGE1-induced cAMP production by fMLP or Ca2+ ionophore A23187 is catalyzed by calmodulin-dependent processes. However, the synergistic increase in cAMP production was not inhibited by arachidonic acid cascade inhibitors such as indomethacin, BW755C, or nordihydroguiaretic acid, and a combination of PGE1 and a protein kinase C activator, tetradecanoyl phorbol acetate (TPA), did not cause synergistic increase in cAMP. Marked increase in cAMP was also induced by a combination of cholera toxin and fMLP or Ca2+ ionophore A23187, but not by a combination of forskolin and fMLP or Ca2+ ionophore A23187. The synergistic increase in cAMP was not sustained in isolated membranes. On the contrary, PGE1-induced cAMP production in isolated membranes was suppressed by their pretreatment with fMLP or Ca2+ ionophore A23187. These data suggest that the synergistic effects of PGE1 and fMLP or Ca2+ ionophore in increasing the cAMP level are due to potentiation of PGE1-induced cAMP production by Ca2+ and calmodulin-dependent processes.  相似文献   

9.
The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somewhat less strongly, with a lower quantum yield, and does not move across the membrane. Complexation of the negatively charged form with divalent cations was measured by the decrease in fluorescence. An apparent rate constant (kapp) for transport of the ionophore across the membrane was determined from the rate of fluorescence changes observed in stopped-flow rapid kinetic experiments. The variation of kapp was studied as a function of pH, temperature, ionophore concentration, membrane lipid composition, and divalent cation concentration and type. Analysis and comparison with equilibrium constants for protonation and complexation show that A23187 and its metal:ionophore complexes bind near the membrane-water interface in the lipid polar-head region. The interfacial reactions occur rapidly, compared with the transmembrane reactions, and are thus in equilibrium during transport. The transport cycle can be described as follows: a 1:1 complex is formed between the membrane bound A23187-(Am-) and the aqueous divalent cation with dissociation constant K1 approximately 4.6 x 10(-4) M. This is in equilibrium with a 1:2 (metal:ionophore) complex (K2 approximately 3.0 x 10(-4) [ionophore/lipid]) that is responsible for transporting the divalent cations across the membrane. The rate constant for translocation of the 1:2 complex is 0.1-0.3 s-1. Dissociation of the complex of the trans side and protonation occur rapidly. The rate constant for translocation of H+ . A23187- is 28 s-1. A theory is presented that is capable of reproducing the kinetic data at any calcium concentration. The cation specificity for ionophore complex transport (kapp), determined at low ionophore concentration for a series of divalent cations, was found to be proportional to the equilibrium constant for 1:1 complexation. The order of ion specificity for these processes was found to be Ca2+ greater than Mg2+ greater Sr2+ greater than Ba2+. Interactions with Na+ were not observed. Maximal values of kapp were observed for vesicles prepared from pure dimyristoyl phosphatidylcholine. Inclusion of phosphatidyl ethanolamine, phosphatidic acid, or dipalmatoyl phosphatidylcholine resulted in lower values of kapp. Calcium transport by A23187 is compared with that of X537A, and it is shown that the former is 67-fold faster. The difference in rates is due to differences in the ability of each ionophore to form a 1:2 complex from a 1:1 complex.  相似文献   

10.
K+ efflux in mouse macrophages exhibited a rate constant (kK) of 0.67 +/- 0.04 (h)-1 (mean +/- SEM of 16 experiments). This was strongly stimulated by increasing concentrations of the Ca2+ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)-1 with an IC50 of 7.6 +/- 1.9 microM (mean +/- SEM of 6 experiments). Similar results were obtained with the Ca2+ ionophore ionomycin. Binding experiments with 3H-dihydroalprenolol revealed a high density of beta-adrenergic receptors (97.5 +/- 5.2 fmol/mg protein) with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10(-6)-10(-5) M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K+ efflux was partially inhibited by stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE1; exogenous cAMP; and inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K+ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K+ efflux was half-maximally inhibited (IC50) with 2-5 X 10(-10) M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC50 of about 1-2 X 10(-7) M. Isoproterenol and MIX were also able to partially inhibit ionomycin-stimulated K+ efflux. Isoproterenol and MIX did not inhibit A23187-stimulated K+ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na+:Ca2+ exchange mechanism. Our results show that stimulation of beta-adrenoceptors in mouse macrophages counterbalances the opening of K+ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytosolic free calcium content via a cAMP-mediated stimulation of Na+:Ca2+ exchange.  相似文献   

11.
1. Sealed pigeon erythrocyte 'ghosts' were prepared containing ATP and the Ca2+-activated photoprotein obelin to investigate the relationship cyclic AMP formation and internal free Ca2+. 2. The 'ghosts' were characterized by (a) morphology (optical and electron microscopy), (b) composition (haemoglobin, K+, Na+, Mg2+, ATP, obelin), (c) permeability to Ca2+, assessed by obelin luminescence and (d) hormone sensitivity (the effect of beta-adrenergic agonists and antagonists on cyclic AMP formation). 3. The effect of osmolarity at haemolysis and ATP at resealing on these parameters was investigated. 4. Sealed 'ghosts', containing approx. 2% of original haemoglobin, 150mM-K+, 0.5MM-ATP, 10(3)--10(4) obelin luminescence counts/10(6) 'ghosts', which were relatively impermeable to Ca2+ and in which cyclic AMP formation was stimulated by beta-adrenergic agonists over a concentration range similar to that for intact cells, could be prepared after haemolysis in 6mM-NaCl3mM-MgCl2/50mM-Tes, pH7, and resealing for 30min at 37 degrees C in the presence of ATP and 150mM-KCl. 5. The initial rate of adrenaline-stimulated cyclic AMP formation in these 'ghosts' was 30--50% of that in intact cells and was inhibited by the addition of extracellular Ca2+. Addition of Ca2+ to the 'ghosts' resulted in a stimulation of obelin luminescence, indicating an increase in internal free Ca2+ under these conditions. 6. The ionophore A23187 increased the rate of obelin luminescence in the 'ghosts' and also inhibited the adrenaline-stimulated increase in cyclic AMP. 7. The effect of ionophore A23187 on obelin luminescence and on cyclic AMP formation in the 'ghosts' was markedly decreased by sealing EGTA inside the 'ghosts'. 8. It was concluded that cyclic AMP formation inside sealed pigeon erythrocyte 'ghosts' could be inhibited by more than 50% by free Ca2+ concentrations in the range 1--10 micrometer.  相似文献   

12.
The effect of ETH 1001 on ion fluxes across red blood cell membranes   总被引:1,自引:0,他引:1  
The calcium selective ionophore, ETH 1001, and the divalent cation ionophore, A23187, promoted Ca2+ flux across RBC membranes under various experimental conditions. ETH 1001 did not promote the passive movement of Mg2+ whereas A23187 did. The results confirm the potential application of ETH 1001 as a Ca2+ selective ionophore for biological membranes.  相似文献   

13.
The cation complexation equilibria between ionophore A23187 and several alkaline earth and first transition series divalent cations have been investigated. Absorption and fluorescence spectroscopy were used to monitor the reactions which were studied in solutions of 80% methanol/water, at 25 degrees C, and under conditions of controlled ionic strength and pH. Titration of the ionophore with divalent cations results first in formation of the dimeric species MA2 and subsequently in the formation of MA+ by disproportionation of the first product. With Zn2+, Ni2+, and Co2+ (above pH approximately 6), a third species is detected which is postulated to be MA.OH. The existence of this species with Mn2+ and alkaline earth cations is uncertain. For formation of MA2, the second stepwise stability constant is similar to or exceeds the first value with all cations studied. However, it is possible to isolate the first reaction and determine accurate stability constants by working at an ionophore concentration of 3 X 10(-8) M or less and by employing pH values which preclude interference by the mixed ionophore/hydroxide species. Under these conditions, the relationship between log KMA' and pH is linear and displays a slope of 1.0. pH-independent stability constants were calculated by using pH-dependent stability constants and the known value of the ionophore's protonation constant in this solvent. The logarithms of the values obtained ranged from 7.54 +/- 0.06 for Ni2+ to 3.60 +/- 0.06 for Ba2+. The selectivity sequence and relative affinities (in parentheses) for the species MA+ are as follows: Ni2+ (977) greater than Co2+ (331) greater than Zn2+ (174) greater than Mn2+ (34) greater than Mg2+ (1.00) approximately equal to Ca2+ (0.89) greater than Sr2+ (0.20) greater than Ba2+ (0.11). Data are discussed in comparison to other studies on the complexation properties of A23187 and in terms of their significance to interpreting the transport properties of this ionophore.  相似文献   

14.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

15.
Ionophore A23187-mediated net influx of Ca2+ in ATP-depleted human red cells was studied as a function of the pH and the proton concentration gradient across the membranes. Utilizing the Ca2+-induced increase in K+ conductance of the cell membranes, various CCCP-mediated proton gradients were raised across the membranes of cells suspended in unbuffered salt solutions with different K+ concentrations. In ionophore-mediated equilibrium the concentration ratios of ionized Ca between ATP-depleted, DIDS-treated cells and their suspension medium were equal to the concentration ratios of protons raised to the second power. With no proton concentration gradient across the membranes the net influxes of Ca2+ as a function of pH resembled a titration curve of a weak acid, with half maximal net influx at pH 7.3, at 100 μM extracellular Ca2+. With cellular pH fixed at various values, the net influx of Ca2+ was determined as a function of the proton concentration gradient. A linear relationship between the logarithm of net influx and the difference between extracellular and cellular pH was found at all cellular pH values tested, but the proton concentration gradient acceleration was a function of the cellular pH. Accelerations between 10- and 40- times per unit ΔpH were found and net effluxes were correspondingly decreased. The results are discussed in relation to present models of the mechanism of ionophore A23187-mediated Ca2+ transport. The importance of the proton concentration gradient dependency is discussed in relation to the induced oscillations in K+-conductance of human red cell membranes previously reported (Vestergaard-Bogind and Bennekou (1982) Biochim. Biophys. Acta 688, 37ndash;44).  相似文献   

16.
The conditions under which ionophore A23187 can be used as a probe of Mg2+ involvement in the reactions of intact (Type A) spinach chloroplasts have been investigated by monitoring ionophore-induced reversal of slow fluorescence quenching. The following observations were made: (1) A23187-dependent reversal of quenching is a strong function of pH. This is consistent with competition between protons and divalent cations for the carboxylic acid moiety of the ionophore. (2) In the presence of exogenous Mg2+, quenching reversal by A23187 is significantly slowed. It is suggested that formation of the dimeric A23187 . Mg2+ complex delays action of the ionophore at the thylakoid membrane by slowing equilibration of the ionophore among chloroplast membrane phases. (3) In the absence of Mg2+, significant interaction of A23187 with certain monovalent cations--Li+ and Na+, but not K+--is observed. Evaluations of the interaction of ionophore A23187 with specific biological systems and inferences of divalent cation involvement, or lack thereof, must take these limitations into account.  相似文献   

17.
In studying the mechanism controlling the sperm acrosome reaction (AR) in the marine shrimp Sicyonia ingentis, intracellular Ca2+ and pH were measured using the fluorescent indicators Fura-2 and Fluo-3 for Ca2+, and SNARF-1 for pH. Capacitated sperm possessed an apparent resting Ca2+ concentration of 1-2 microM which remained constant upon induction of the AR with egg water. Uncapacitated sperm had extremely low Ca2+ levels and did not respond to egg water. These results suggest that, while in other species the Ca2+ is elevated to micromolar levels during initiation of the AR, S. ingentis sperm are preloaded with Ca2+ during capacitation and the trigger for the AR is downstream of the Ca2+ increase. The notion that Ca2+ influx is not involved at the actual time of the AR in capacitated S. ingentis sperm is supported by the inability of Ca2+ ionophore A23187 to induce the AR and the ineffectiveness of Ca2+ channel antagonists to block egg water-induced AR. Measurements of capacitated sperm pH showed a significant decrease during the first 10-15 min of the AR, which did not correlate temporally to either acrosomal exocytosis (at 5 min post-induction) or filament formation (after 45 min). Inhibition of egg protease activity required for induction of filament formation did not inhibit the pH drop, indicating that intracellular acidification is not the final trigger for filament formation, although it may be required prior to action of the protease.  相似文献   

18.
The conductance of the Ca2+-sensitive K+-channels in human red cell membranes has been determined as a function of the intracellular pH. A sudden increase in the intracellular concentration of ionized calcium was established by addition of ionophore A23187 to a suspension of cells in buffer-free, Ca2+-containing salt solution. At the various cellular pH-values cellular concentrations of ionized Ca, saturating with respect to activation of the Ca2+-sensitive K+-conductance, were obtained by the use of varied concentrations of extracellular Ca2+ and added ionophore A23187. Changes in membrane potential was monitored as CCCP-mediated changes in extracellular pH. Initial net effluxes of K+, cellular K+ contents and the K+ Nernst equilibrium potentials were calculated from flame photometric measurements. Cellular Ca-contents were determined by aid of 45Ca. With cellular Ca2+ at the saturating level with respect to activation of the K+-channel the K+-conductance calculated from these data was independent of extracellular pH and a steep function of cellular pH with a half maximal conductance of 31 microSeconds/cm2 at a cellular pH of 6.1. The K+-conductance is not a simple function of cellular pH (pHc). From pHc = 6.5 and down to pHc = 6.0 a Hill-coefficient of 2.5 was found, indicating cooperativity between at least two sites regulating the conductance. Below pHc = 6.0 an extremely high Hill-coefficient of 11 was found, probably indicating that the additional titration of the channel protein leads to an increased cooperativity. The importance, as a physiological regulatory mechanism, of a K+-conductance increasing from zero to maximal conductance within less than one unit of pH, is discussed.  相似文献   

19.
Calcium-specific ionophores are used widely to stimulate Ca2+-dependent secretion from cells on the assumption that permeabilization of the cell membranes to Ca2+ ions leads to a rise in concentration of cytosolic Ca2+ ([Ca2+]i), which in turn serves as a signal for secretion. In this way, events that precede mobilization of Ca2+ ions via receptor stimulation are bypassed. One such event is thought to be the rapid hydrolysis of membrane inositol phospholipids to form inositol phosphates and diacylglycerol. Accordingly, rat leukemic basophil (2H3) cells can be stimulated to secrete histamine either with the ionophores or by aggregation of receptors for IgE in the plasma membrane. We find, however, that ionophore A23187 stimulates secretion of histamine only at concentrations (200-1000 nM) that stimulate hydrolysis of membrane inositol phospholipids. The extent of hydrolysis of inositol phospholipids was dependent on the concentration of ionophore and the presence of external Ca2+ ions and correlated with the magnitude of the secretory response. A similar correlation between secretion and hydrolysis of inositol phospholipids was observed in response to the Ca2+-specific ionophore, ionomycin. Although this hydrolysis (possibly a consequence of elevated [Ca2+]i) was less extensive than that induced by aggregation of receptors, it may govern the secretory response to A23187. The studies revealed one paradox. The rise in [Ca2+]i depended on intracellular ATP levels, when either an ionophore or antigen was used as a stimulant irrespective of whether hydrolysis of inositol phospholipids was stimulated or not. The concept of how the ionophores act, therefore, requires critical reevaluation.  相似文献   

20.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号