首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root architecture is a crucial part of plant adaptation to soil heterogeneity and is mainly controlled by root branching. The process of root system development can be divided into two successive steps: lateral root initiation and lateral root development/emergence which are controlled by different fluxes of the plant hormone auxin. While shoot architecture appears to be highly regular, following rules such as the phyllotactical spiral, root architecture appears more chaotic. We used stochastic modeling to extract hidden rules regulating root branching in Arabidopsis thaliana. These rules were used to build an integrative mechanistic model of root ramification based on auxin. This model was experimentally tested using plants with modified rhythm of lateral root initiation or mutants perturbed in auxin transport. Our analysis revealed that lateral root initiation and lateral root development/emergence are interacting with each other to create a global balance between the respective ratio of initiation and emergence. A mechanistic model based on auxin fluxes successfully predicted this property and the phenotype alteration of auxin transport mutants or plants with modified rhythms of lateral root initiation. This suggests that root branching is controlled by mechanisms of lateral inhibition due to a competition between initiation and development/emergence for auxin.  相似文献   

2.
In plants, the developmental mechanisms that regulate the positioning of lateral organs along the primary root are currently unknown. We present evidence on how lateral root initiation is controlled in a spatiotemporal manner in the model plant Arabidopsis thaliana. First, lateral roots are spaced along the main axis in a regular left-right alternating pattern that correlates with gravity-induced waving and depends on AUX1, an auxin influx carrier essential for gravitropic response. Second, we found evidence that the priming of pericycle cells for lateral root initiation might take place in the basal meristem, correlating with elevated auxin sensitivity in this part of the root. This local auxin responsiveness oscillates with peaks of expression at regular intervals of 15 hours. Each peak in the auxin-reporter maximum correlates with the formation of a consecutive lateral root. Third, auxin signaling in the basal meristem triggers pericycle cells for lateral root initiation prior to the action of INDOLE-3-ACETIC ACID14 (SOLITARY ROOT).  相似文献   

3.
In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.  相似文献   

4.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

5.
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.  相似文献   

6.
Root system architecture depends on lateral root (LR) initiation that takes place in a relatively narrow developmental window (DW). Here, we analyzed the role of auxin gradients established along the parent root in defining this DW for LR initiation. Correlations between auxin distribution and response, and spatiotemporal control of LR initiation were analyzed in Arabidopsis thaliana and tomato (Solanum lycopersicum). In both Arabidopsis and tomato roots, a well defined zone, where auxin content and response are minimal, demarcates the position of a DW for founder cell specification and LR initiation. We show that in the zone of auxin minimum pericycle cells have highest probability to become founder cells and that auxin perception via the TIR1/AFB pathway, and polar auxin transport, are essential for the establishment of this zone. Altogether, this study reveals that the same morphogen-like molecule, auxin, can act simultaneously as a morphogenetic trigger of LR founder cell identity and as a gradient-dependent signal defining positioning of the founder cell specification. This auxin minimum zone might represent an important control mechanism ensuring the LR initiation steadiness and the acropetal LR initiation pattern.  相似文献   

7.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

8.
Auxin and auxin-mediated signaling pathways are known to regulate lateral root development. Although exocytic vesicle trafficking plays an important role in recycling the PIN-FORMED (PIN) auxin efflux carriers and in polar auxin transport during lateral root formation, the mechanistic details of these processes are not well understood. Here, we demonstrate that BYPASS1-LIKE (B1L) regulates lateral root initiation via exocytic vesicular trafficking-mediated PIN recycling in Arabidopsis thaliana. b1l mutants contained significantly more lateral roots than the wild type, primarily due to increased lateral root primordium initiation. Furthermore, the auxin signal was stronger in stage I lateral root primordia of b1l than in those of the wild type. Treatment with exogenous auxin and an auxin transport inhibitor indicated that the lateral root phenotype of b1l could be attributed to higher auxin levels and that B1L regulates auxin efflux. Indeed, compared to the wild type, C-terminally green fluorescent protein-tagged PIN1 and PIN3 accumulated at higher levels in b1l lateral root primordia. B1L interacted with the exocyst, and b1l showed defective PIN exocytosis. These observations indicate that B1L interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation in Arabidopsis.  相似文献   

9.
Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7 , reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.  相似文献   

10.
Previous data have suggested an involvement of MDR/PGP-like ABC transporters in transport of the plant hormone auxin and, recently, AtPGP1 has been demonstrated to catalyze the primary active export of auxin. Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss-of-function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.  相似文献   

11.
Auxin transport promotes Arabidopsis lateral root initiation   总被引:22,自引:0,他引:22       下载免费PDF全文
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.  相似文献   

12.
13.
Phosphate availability regulates root system architecture in Arabidopsis   总被引:31,自引:0,他引:31  
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.  相似文献   

14.
Split‐root experiments were conducted to test the hypothesis that adjustments in lateral root initiation, as might occur in response to localized soil conditions, are determined by the sugar content of the root and do not depend on changes in the import of phloem‐translocated phytohormones. Wheat ( Triticum aesticum L. cv. Alexandria) seedlings were grown in hydroponics with their seminal roots divided between two compartments within the culture vessel. Two seminal roots of treated plants were supplied with standard nutrient solution supplemented with 50 m M glucose, whilst the remaining three roots received nutrient solution without glucose. Control plants had their roots divided in the same ratio, but both 'halves' received nutrient solution without glucose. Feeding glucose to one 'half' of the root system increased the frequency (number per unit length) of lateral root primordia in the fed axes. The increase was first observed 15 h after the start of treatment and was located within the apical 30 mm of root. At this time there was no significant treatment effect on the frequency of primordia in non‐fed axes. The enhanced initiation of lateral roots in glucose‐fed root tips was associated with an increase in their concentration of glucose and sucrose plus low molecular mass fructans. In contrast, there was a reduction in partitioning of 14C‐photosynthate to these root tips compared to the non‐fed roots of treated plants and controls. The results indicate that lateral root initiation can be stimulated by sugars in the absence of an increase in phloem translocation. It is proposed that proliferation of lateral roots in response to localized soil conditions, such as nutrient patches, may be signalled by an increase in sugar content of the tissue, rather than an altered flux of phytohormones or other material co‐transported with sucrose in the phloem.  相似文献   

15.
Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.  相似文献   

16.
The isolation and detailed characterisation of the maize mutant lrt1 , which is completely deficient in the initiation of lateral roots at the primary and seminal lateral roots and of the crown roots at the coleoptilar node is described. The monogenic and recessive mutant was isolated from a segregating EMS mutagenised population, maps to the short arm of chromosome 2, and acts independently of the nodal root deficient rtcs locus. Histological analysis revealed that the mutation acts at a very early stage of root initiation, as indicated by the absence of primordia formation in the affected roots. At later stages of plant development lateral and crown root initiations recover leading to fertile plants. If grown in the dark, the mutant does not form an elongated mesocotyl, although the photomorphogenic response appears to be normal in the mutant. Furthermore, the wild-type cannot be rescued from mutants by the application of auxin to germinating kernels. The gene impaired in lrt1 seems to be of great importance for the general mechanism of early post-embryonic root initiation, both from root and nodal tissues, since lateral and crown root initiation are both affected to the same extent and in the same transient time pattern.  相似文献   

17.
18.
Bao F  Shen J  Brady SR  Muday GK  Asami T  Yang Z 《Plant physiology》2004,134(4):1624-1631
Plant hormone brassinosteroids (BRs) and auxin exert some similar physiological effects likely through their functional interaction, but the mechanism for this interaction is unknown. In this study, we show that BRs are required for lateral root development in Arabidopsis and that BRs act synergistically with auxin to promte lateral root formation. BR perception is required for the transgenic expression of the beta-glucuronidase gene fused to a synthetic auxin-inducible promoter (DR5::GUS) in root tips, while exogenous BR promotes DR5::GUS expression in the root tips and the stele region proximal to the root tip. BR induction of both lateral root formation and DR5::GUS expression is suppressed by the auxin transport inhibitor N-(1-naphthyl) phthalamic acid. Importantly, BRs promote acropetal auxin transport (from the base to the tip) in the root. Our observations indicate that BRs regulate auxin transport, providing a novel mechanism for hormonal interactions in plants and supporting the hypothesis that BRs promote lateral root development by increasing acropetal auxin transport.  相似文献   

19.
Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号