首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
beta-Endorphin: characteristics of binding sites in the rat brain.   总被引:3,自引:0,他引:3  
Stereospecific binding of human β-endorphin to rat membrane preparations is described for the first time using [3H-Tyr27]-βh-endorphin as the ligand. The binding is time dependent and saturable with respect to βh-endorphin with an apparent dissociation constant of 0.3 nM. Sodium ion (100 mM) elevates this value to 2.5 nM but has no effect on the total number of binding sites present in the membrane preparation. The ability of certain β-endorphin analogs, opiate agonists as well as antagonists to inhibit the binding of βh-endorphin, is presented.  相似文献   

3.
The activities of the enantiomers of BM-5 were examined to measure muscarinic cholinergic selectivity in the central nervous system. Autoradiographic studies assessed the ability of each enantiomer to inhibit the binding of [3H]-(R)-quinuclidinyl benzilate ([3H]-(R)-QNB) to muscarinic receptors in the rat brain. (+)-(R)-BM-5 inhibited [3H]-(R)-QNB binding to rat brain sections at concentrations below 1.0 microM, while 100-fold higher concentrations of (-)-(S)-BM-5 were required for comparable levels of inhibition. Analysis of the autoradiograms indicated that both stereoisomers had a similar distribution of high affinity binding sites. Each enantiomer displayed higher affinity for muscarinic receptors in the superior colliculi and lower affinity for receptors in the cerebral cortex and hippocampus. (+)-(R)-BM-5 and oxotremorine inhibited adenylyl cyclase activity in the cerebral cortex with efficacies comparable to that for acetylcholine. (+)-(R)-BM-5 was 26-fold more potent than (-)-(S)-BM-5 in inhibiting adenylyl cyclase. Oxotremorine-M and carbamylcholine stimulated phosphoinositide turnover in the cerebral cortex. Oxotremorine had lower activity and (+)-(R)-BM-5 was essentially inactive at comparable concentrations. The difference in activity of the two enantiomers indicates a remarkable stereochemical selectivity for muscarinic receptors. The stereoselectivity index is comparable for both the autoradiographic assays (48) and measures of adenylyl cyclase activity (26) in the cerebral cortex.  相似文献   

4.
Lectins belong to a class of proteins or glycoproteins able to bind carbohydrates. The study reported here describes the identification of lectin-binding sites in the adult rat brain. The results indicate that among the 31 lectins utilized, eight show a specific positive reaction with neurons. Staining was also observed with other cerebral structures such as myelin, leptomeninges, choroid plexus and capillaries. Lectins are, therefore, an important histochemical tool and can be easily and reliably used for the identification of cells and cerebral structures in the adult rat brain.Abbreviations Gal galactose - Fuc fucose - Man mannose - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - NeuNAc sialic acid  相似文献   

5.
An asymmetric distribution of GABA binding sites was found in the cerebral cortex, hippocampus, cerebellar hemispheres, striatum, and thalamus. Higher levels of [3H]GABA binding were observed in the left-side of most brain areas and in a greater percentage of adult rats, but the opposite asymmetry was found in the thalamus. A similar left-right difference in cerebral hemispheres was also found in five day-old rats, suggesting the genetic predetermination of asymmetry.  相似文献   

6.
The distribution of 3H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of 3H-nomifensine to caudate putamen sections was saturable, specific, of a high affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of 3H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) 3H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxydopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the 3H-ligand binding in these areas. Moderately high concentrations of the 3H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of the binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that 3H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site.  相似文献   

7.
1. Meptazinol is an interesting opioid-producing naloxone-reversible analgesia with few cardiovascular and respiratory effects. Recent studies indicate that mu 1 opioid receptors mediate meptazinol analgesia. Using a computerized autoradiographic subtraction technique, we have examined the regional distribution of meptazinol-sensitive [3H][D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAGO) binding and compared this with the distribution of mu 1 binding determined by competition with low [D-Ala2,D-Leu5]enkephalin (DADL) concentrations. 2. Meptazinol and DADL lowered [3H]DAGO to similar extents in most brain regions studied. The greatest levels of inhibition were observed in the periaqueductal gray, interpeduncular nucleus, thalamus, hypothalamus, and hippocampus. Low levels of inhibition were found in the temporal and frontal cortex. The correlation between the inhibition of [3H]DAGO binding by meptazinol and that by DADL was high (r = 0.83), consistent with the binding of meptazinol to mu 1 sites.  相似文献   

8.
Enkephalins, endorphins and related peptides were determined in pituitary and brain tissue of rats which were killed by decapitation or microwave irradiation. The tissues were heated in 1M acetic acid prior to homogenization and the levels of the various peptides were measured by means of a combination of HPLC and radioimmunoassays. Enkephalin levels in pituitary and brain of irradiation-killed rats were much higher as compared to those in tissue of rats sacrificed by decapitation. Similar data were obtained with respect to pituitary levels of γ-endorphin, des-Tyr-γ-endorphin and des- Tyr-α-endorphin. However, brain levels of α- and γ-endorphin and their respective des-Tyr-fragments were not different with the two methods of sacrifice used. The concentrations of β-endorphin in the pituitary gland were similar in rats killed by microwave irradiation and decapitation, but irradiation showed higher β-endorphin levels in the brain than decapitation. These results suggest that β-endorphin fragments like α- and γ-endorphin and des-Tyr-α- and des-Tyr-γ-endorphin are endogenous peptides in the rat pituitary gland and the brain.  相似文献   

9.
In this communication, we report the presence of a unique colchicine-binding activity in the polysomes of rat brain. This drug-binding property, is somewhat similar to that of tubulin isolated from many sources; however, it differs in several bio-chemical characteristics such as (i) thermal stability of colchicine-binding site, (ii) protection of binding site by vinblastine and (iii) time required for binding equilibration. Such binding of colchicine to the polysomes is most probably due to the presence of a nascent peptide chain of tubulin in the polysome.  相似文献   

10.
Displacement studies of [3H]-[D-Ala2-MePhe4-Gly-ol5]-enkephalin ([3H]-DAGO) and [3H]-[D-Ala2-D-Leu5]-enkephalin ([3H]-DADL) by the corresponding unlabeled ligands show that there are at least three classes of sites which bind these enkephalin analogs with high affinity. Using computer modeling, the introduction of the third site significantly improved the goodness of fit in ten consecutive experiments. These sites appear to correspond to the mu, delta and mu 1 sites, with mean dissociation constants of 11, 1.3 and 0.9 nM for DADL and 2.5, 300 and 0.3 nM for DAGO, respectively.  相似文献   

11.
Characteristics of 3H-substance P binding sites in rat brain membranes   总被引:1,自引:0,他引:1  
Binding characteristics of 3H-Substance P (SP) were studied with rat brain membranes using a method applied to peripheral tissues by Lee and Snyder [15]. This method was well applicable to central nervous system (CNS) tissues. The results in the present study indicate that specific 3H-SP binding reaches a plateau only after 20 minutes of incubation, and the binding sites are saturable at a relatively low concentration of 3H-SP. Scatchard analysis of specific binding data reveals a single class of binding sites with a high affinity (Kd = 0.30 nM) and a low density (Bmax = 27.7 fmol/mg protein) in rat brain membranes. A Hill plot of the displacement curve of 3H-SP with unlabelled SP showed no indication for cooperativity (nH = 0.83). The relative potencies of binding of various SP fragments at 3H-SP binding sites were fairly parallel to the length of the C-terminal fragments. Neurotransmitters not structurally related to SP produced no effect on 3H-SP binding even when used at micromolar concentrations.  相似文献   

12.
Studies are in progress to characterize the nature of ligand interactions at peripheral anionic sites on mammalian brain AChE, including the beta-anionic or "accelerator" anionic sites where enzyme activity is increased upon Ca2+ binding. Terbium was studied as a fluorescence probe of Ca2+ binding sites in partially purified AChE from whole rat brain. Scatchard analysis of Tb3+ binding in low ionic strength (2 mM) Pipes buffer revealed at least two populations of sites: high affinity sites with Kd(app) approximately 7.6 microM and low-affinity sites with a Kd(app) approximately 49.6 microM. Low-affinity binding was selectively inhibited by 50 mM NaCl; high-affinity binding was completely inhibited by 2 mM CaCl2; and all the bound Tb3+ could be displaced by 1 mM EDTA. The heterogeneity of Tb3+ binding sites is consistent with the multiple, concentration-dependent effects of Tb3+ on enzyme activity.  相似文献   

13.
Specific binding sites for vasopressin (AVP) were located in subcellular particulate fractions of rat brain with tritiated vasopressin of high specific activity, 22.5 Ci/mmol. Rat brain tissue was dissected, placed in cold 0.32 M sucrose containing proteolytic inhibitors, homogenized and fractionated into a crude nuclear fraction (1K pellet), crude mitochondrial fractions (12K pellet), and plasma membranes and microsomes (100K pellet). Specific binding of vasopressin was found in the 12K and 100K pellets in the presence of a divalent metal ion with Ni greater than Co greater than Mg greater than Mn greater than no metal ion at pH 7.4 in 50 mM Tris-Maleate buffer. Maximum specific binding of 16 nM AVP was located in the 100K anterior cortex fraction which bound 350 fmoles/mg protein; striatum, midbrain/thalamus, cerebellum, and medulla oblongata and pons bound specifically about 200 fmoles/mg protein and frontal poles and parietal cortex about 100 fmoles/mg protein in the 100K pellet. In all of the brain regions studied, except hippocampus and septum, the 100K pellet bound specifically 2 to 4 times more 3H-AVP than the 12K pellet. In the hippocampus with 16 nM AVP, the 12K pellet bound specifically 150 fmoles/mg protein; the septum, 75 fmoles/mg protein. Little or no binding to the 100K pellet was present in these regions. Bound AVP could be dissociated rapidly from the membranes by the addition of EDTA. The 12K hippocampal pellet was further fractionated into myelin, mitochondria, and synaptosomes; purification was confirmed by marker enzyme assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Angiotensin II binding sites were localized and quantified in individual brain nuclei from single rats by incubation of tissue sections with 1 nM 125I-[Sar1]-angiotensin II, [3H]-Ultrofilm autoradiography, computerized microdensitometry and comparison with 125I-standards. High angiotensin II binding was present in the circumventricular organs (organon vasculosum laminae terminalis, organon subfornicalis and area postrema), in selected hypothalamic nuclei (nuclei suprachiasmatis, periventricularis and paraventricularis) and in the nucleus tractus olfactorii lateralis, the nucleus preopticus medianus, the dorsal motor nucleus of the vagus and the nucleus tractus solitarii. High affinity (KA from 0.3 to 1.5 X 10(9) M-1) angiotensin II binding sites were demonstrated in the organon subfornicalis, the nucleus tractus solitarii and the area postrema after incubation of consecutive sections from single rat brains with 125I-[Sar1]-angiotensin II in concentrations from 100 pM to 5 nM. These results demonstrate and characterize brain binding sites for angiotensin II of variable high affinity binding both inside and outside the blood-brain barrier.  相似文献   

15.
Binding sites for calcitonin (CT), as assayed by the displacable binding of [125-I] iodo salmon CT ([125-I]sCT), were found on a membrane fraction prepared from rat brain. The half times of association varied between 23 and 7 min as a function of the temperatures used in the incubation medium, ranging from 6° to 37°C. Salmon CT in amounts as low as 10?10 M inhibited the binding of [125-I]sCT to the membranes, whereas the virtually biologically inactive free acid of human CT and human CT sulfone did not affect the binding. The specific binding of [125-I]sCT to the membranes was directed to structural and/or conformational features in the COOH-terminal half of salmon CT. 133 to 8,900 times higher amounts of porcine CT and human CT and analogues thereof were required to achieve an inhibition of binding equal to that produced by salmon CT. Sixty-seven percent of specific binding of labeled hormone was not dissociable, even after 6 h of incubation with an excess of unlabeled hormone. [125-I]sCT extracted from the membranes was not degraded, as judged by gel permeation chromatography, and retained binding activity. Specific binding was highest in the hypothalamus, followed by the brainstem. It was intermediate in the midbrain-thalamus and the striatum, lower in the cortex and negligible in the hippocampus, and cerebellum and the spinal cord.  相似文献   

16.
In the present study, we describe the specificity and the autoradiographic distribution of insulin binding sites in the rat central nervous system (CNS) after in vitro incubation of brain sections with [125I]-14A insulin. Increasing concentrations of unlabeled insulin produced a dose-dependent inhibition of [125I]-insulin binding which represented 92 +/- 2% displacement with 3 X 10(-5) M, whatever the brain sections tested. Half-maximum inhibition with native insulin was obtained with 2.2 X 10(-9) M, with 10(-7) M proinsulin whereas glucagon had no effect. Under our experimental conditions, no degradation of [125I]-insulin was observed. Autoradiograms obtained by apposition of LKB 3H-Ultrofilm showed a widespread distribution of [125I]-insulin in rat CNS. However, quantitative analysis of the autoradiograms with 10(-10) M of labeled insulin, showed a high number of [125I]-insulin binding sites in the choroid plexus, olfactory areas, in both cerebral and cerebellar cortices, the amygdaloid complex and in the septum. In the hippocampal formation, the dorsal dentate gyrus and various subfields of CA1, CA2 and CA3 were labeled. Moreover, arcuate, dorso- and ventromedial nuclei of the hypothalamus contained high concentrations of [125I]-insulin whereas a low density was observed in the mesencephalon. The metabolic role of insulin in the CNS is supported by the large distribution of insulin binding sites in the rat brain. However, the presence of high affinity binding sites in selective areas involved in perception and integrative processes as well as in the regulation of both feeding behavior and neuroendocrine functions, suggests a neuromodulatory role of insulin in the brain.  相似文献   

17.
Unsaturated free fatty acids and adenosine operate two neuromodulatory systems with opposite effects on neuronal function. Here, we tested if fatty acids controlled inhibitory adenosine A1 receptors. Arachidonate (AA, 10 microM) decreased the Bmax of an A1 receptor agonist, (R)-[3H]phenylisopropyladenosine (PIA; from 812 to 267 fmol x mg(-1) protein), and antagonist, [3H]1,3-dipropyl-8-cyclopentylxanthine (DPCPX; from 994 to 311 fmol x mg(-1) protein) and decreased the Kd of [3H]PIA (from 1.20 to 0.57 nM) binding to brain membranes of young adult rats (2 months old), these effects being mimicked by other cis but not trans unsaturated or saturated fatty acids. AA (10 microM) increased the potency of the A1 receptor agonist, 2-chloroadenosine to inhibit hippocampal synaptic transmission in young adult rats (EC50 decreased from 337 to 237 nM), which may constitute a safety feedback mechanism to control AA-induced neurotoxicity. Upon aging, there were increased free fatty acid levels and a concomitant decreased density of A1 receptors. This was more marked in hippocampal nerve terminals of aged rats (24 months old) and may be the determinant factor contributing to the lower potency of 2-choloroadenosine in aged rats (EC50 = 955 nM), in spite of the decreased Kd of PIA binding upon aging. The effects of AA on A1 receptor binding were attenuated upon aging, AA being devoid of effects in aged rats. Accordingly, AA (10 microM) failed to modify the potency of 2-choloroadenosine in aged rats (EC50 = 997 nM). However, albumin, which quenches free fatty acids, increased A1 receptor density by 65% and 2-chloroadenosine potency (EC50 = 703 nM) in aged rats, suggesting that the increased fatty acids levels in aged rats may contribute to the decreased potency of A1 receptor agonists in aged rats. Also, the observed saturation of the control by AA of A1 receptors may contribute to the decreased adaptability of neuromodulation to different firing conditions in aged rats.  相似文献   

18.
The affinity of beta-carbolines, which may be formed in the body, to benzodiazepine and opiate receptors was studied by measuring their ability to inhibit the binding of [3H]-flunitrazepam and [3H]-dihydromorphine on rat brain synaptosomal membranes. All "aromatized" beta-carbolines studied (norharmane, harmane and 6-methoxyharmane) inhibited the specific binding of [3H]-flunitrazepam in micromolar concentrations, dihydro-beta-carbolines (6-methoxyharmalan, harmalol) were less potent, while all tetrahydro-beta-carbolines showed very low affinity. 6-Hydroxytetrahydroharmane, which is formed by condensation 5HT with acetaldehyde, inhibited [3H]-dihydromorphine binding in micromolar concentration, while norharmane and tetrahydro-beta-carbolines without OH-group showed little affinity. beta-Carbolines are the most potent known natural benzodiazepine receptor ligands. Because they are formed after alcohol drinking, their effects on benzodiazepine and opiate receptors may be connected with alcohol dependence although some beta-carbolines may inhibit 5HT uptake in still lower concentrations.  相似文献   

19.
Specific binding sites for arginine vasopressin (AVP) were demonstrated on rat brain membranes using [3H]AVP of high specific activity. At pH 7.4 in the presence of 5 mM MgCl2, one class of sites was measured with aK D of 0.56 nM and aB max of 4.3 fmol/mg protein. At pH 8.0 in the presence of MgCl2, two distinct sites were observed, havingK D values of 0.42 and 13 nM andB max values of 5.6 and 68 fmol/mg protein, respectively, and similar results were obtained at pH 7.4 after repeatedly freezing and thawing the membranes. Binding increased with pH, apparently representing increased occupancy of the high capacity, lower affinity site. Binding to the lower affinity site was also enhanced by freezing and thawing membranes, or by adding 5 mM NiCl2 or 10 M ZnCl2 to the incubation medium, whereas binding to the high affinity site was dependent on the addition of Mg. AVP was over 35 times more active in displacing 0.4 nM AVP than oxytocin or arginine-vasotocin, and 10,000 times more active than somatostatin. A number of other peptides had no effect on [3H]AVP binding at concentrations up to 10–5 M. Autoradiography and regional dissection studies revealed a marked concentration of high affinity AVP-binding sites in the supraoptic and paraventricular nuclei of the hypothalamus, and Mg significantly enhanced the binding in these regions.  相似文献   

20.
Mutations at sites involved in Suc1 binding inactivate Cdc2.   总被引:11,自引:4,他引:7       下载免费PDF全文
suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号