首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It has been suggested that the absence or altered structure of Dp71, a C-terminal dystrophin gene encoded protein, is responsible for mental alterations observed in about 30% of Duchenne muscular dystrophy patients. Most of these patients have premature translational termination or point mutations at the C-terminal domain of this gene. In brain, Dp71 is the major protein product of the dystrophin gene. To determine the function of Dp71 isoforms in this organ, it is important to document their presence and intracellular localization in brain cells. Extracts from cultured hippocampal neurons and forebrain astrocytes and 5F3 and Dys 2 monoclonal antibodies were thus used for western blots. In these conditions, two Dp71 isoforms spliced or not at exon 78 were detected in both cells (Dp71f and Dp71d, respectively). By immunocytochemistry, we mapped Dp71f and Dp71d in the Golgi complex (GC) and in neuronal nuclei. Only Dp71d was found in cytoplasmic neurofilaments. In astrocytes, these isoforms were detected in the GC. These cell localization data suggest that these Dp71 isoforms may have different functions in the same cell or organelle, as well as in the two different cells analyzed.  相似文献   

2.
3.
《FEBS letters》1998,441(2):337-341
The Dp71 dystrophin isoform has recently been shown to localize to actin filament bundles in early myogenesis. We have identified an actin binding motif within Dp71 that is not found in other dystrophin isoforms. Actin overlay assays and transfection of COS-7 cells with fusion proteins of wild type and mutated Flag epitope-tagged Dp71 demonstrate that this motif is necessary and sufficient to direct localization of Dp71 to actin stress fibers. Furthermore, this localization is independent of alternative splicing which alters the C-terminus of the protein. The identification of an actin binding site suggests Dp71 may function to anchor membrane receptors to the cytoskeleton.  相似文献   

4.
Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.  相似文献   

5.
The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this protein in both nerve growth factor (NGF)-induced neuronal differentiation and cell adhesion by isolation and characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic arrest. Dp71 associates with lamin B1 and β-dystroglycan, proteins involved in aspects of the cell division cycle; therefore, we compared the distribution of Dp71 with that of lamin B1 and β-dystroglycan in PC12 cells at mitosis and cytokinesis by means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and β-dystroglycan in Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division cycle by affecting lamin B1 and β-dystroglycan levels.  相似文献   

6.
7.
The role of membrane lipid in the platelet storage lesion.   总被引:3,自引:0,他引:3  
T A Koerner  M T Cunningham  D S Zhang 《Blood cells》1992,18(3):481-97; discussion 498-500
Because of their hemostatic and structural importance and their chemical and physical lability, membrane lipids are likely to be involved in the development of the platelet storage lesion. Chemical analysis using the new method of high-performance liquid chromatography with laser light scattering detection (HPLC-LLS) reveals platelet lipid to be composed of more than 22 individual components, the most abundant of which are phosphatidylcholine (PC), phosphatidylethanolamine (PE), cholesterol (C), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylinositol (PI). Surprisingly, an asymmetric distribution of these lipids is maintained in the resting platelet with PS concentrated in the inner leaflet of the plasma membrane. The exposure of PS may be important in platelet activation because of its powerful procoagulant effect. Studies of the effect of blood bank storage on platelet lipid composition have repeatedly shown a steady loss of all components, which may be temperature dependent. Studies of platelet factor 3 activity and flow cytometry of stored platelets have revealed the lipid is lost through the process of microvesiculation. Coupled to this storage induced depletion of platelet lipid is a loss of more than half of the potential capacity of lipid-dependent platelet functions by day 5. The most likely underlying mechanism for this loss of lipid mass and functional capacity is lipid peroxidation, a process that could be blocked with antioxidants. Lipid peroxidation may also interfere with other membrane constituents such as glycoprotein IIb/IIIa and the aminophospholipid-specific translocase. Thus, lipid peroxidation should be a major focus in studies aimed at preventing or reversing the platelet storage lesion.  相似文献   

8.
Starch-activated mouse peritoneal macrophages (STpMAC) plated on plastic demonstrate the adhesive properties typical for activated pMAC: attaching as round cells and, within 15 min, spreading out with marginal membrane ruffles. These attached STpMAC were labeled by lactoperoxidase-catalysed 125I surface iodination, sodium dodecyl- sulfate-lysed, and the lysates electrophoresed on polyacrylamide gels which were examined by autoradiography. The STpMAC morphological phenotype correlates with the labeling of a particular protein (195,000, estimated mol wt). Normal pMAC (NpMAC), from unstimulated mice, do not spread and do not display the 195,000 band. Both pMAC band patterns, including the 195,000 band, are relatively resistant to trypsin digestion, as is pMAC adhesion itself trypsin-resistant. Neither class of pMAC exhibits fibronectin (Cell Adhesion Factor, LETS protein) which is a component in the adhesive matrix of cells forming trypsin-sensitive monolayers. When pMAC are tested against antifibronectin antibody, these cells do not give immunofluorescent staining. In summary, two functions in pMAC adhesion, enzyme resistance and the ability to spread, appear related to molecular properties distinctive for pMAC surface protein.  相似文献   

9.
We have shown that the splicing isoform of Dp71 (Dp71d) localizes to the nucleus of PC12 cells, an established cell line derived from a rat pheochromocytoma; however, the mechanisms governing its nuclear localization are unknown. As protein phosphorylation modulates the nuclear import of proteins, and as Dp71d presents several potential sites for phosphorylation, we analyzed whether Dp71d is phosphorylated in PC12 cells and the role of phosphorylation on its nuclear localization. We demonstrated that Dp71d is phosphorylated under basal conditions at serine and threonine residues by endogenous protein kinases. Dp71d phosphorylation was activated by 2-O-tetradecanoyl phorbol 13-acetate (TPA), but this effect was blocked by EGTA. Supporting the role of intracellular calcium on Dp71d phosphorylation, we observed that the stimulation of calcium influx by cell depolarization increased Dp71d phosphorylation, and that the calcium-calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7) blocked such induction. The blocking action of bisindolylmaleimide I (Bis I), a specific inhibitor for Ca2+/diacylglicerol-dependent protein kinase (PKC), on Dp71d phosphorylation suggested the participation of PKC in this event. In addition, transfection experiments with Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression vectors as well as the use of KN-62, a CaMKII-specific inhibitor, demonstrated that CaMKII is also involved in Dp71d phosphorylation. Stimulation of Dp71d phosphorylation by cell depolarization and/or the overexpression of CaMKII favored the Dp71d nuclear accumulation. Overall, our results indicate that CAMKII-mediated Dp71d phosphorylation modulates its nuclear localization.  相似文献   

10.
11.
The adhesion of platelets plays an essential role in thrombogenesis. Adhesion occurs at sites called focal adhesions (FA), where cell-membrane receptors bind specifically to substrate proteins and couple to each other and to the cytoskeleton via various cellular proteins. The resulting molecular structure suggests that the cortex stiffens at the FA, which likely affects platelet adhesion. This hypothesis is explored by structural analysis and parametric investigation. The cortex is modeled as a shell anchored to the substrate by adhesion forces and subjected to a detachment force. Equilibrium considerations result in a non-linear, two-point boundary value problem that is solved numerically. The results show that cortex stiffening significantly influences the force required for detachment as well as the cell-membrane internal stresses. The magnitude of these effects depends on the ratio of adhesion-to-bending energies and on the inclination of the detachment force. Because the cortex stiffening depends on cellular events, these results suggest a possible mechanism by which platelets can control their adhesion and protect themselves from damage.  相似文献   

12.
The review addresses the effect of microgravity on the endothelial cells, an important mechanosensory element of the cardiovascular system that is known to undergo functional changes in space flight. The chalanges that arise in performing space flight experiments are presented, as well as approaches used to simulate microgravity effects in vitro. The role of cytoskeletal elements as the putative gravity sensors in the cells is demonstrated. The changes in the expression of adhesion molecules that may underlie the mechanisms of gravity sensing by endothelial cells are described. The possible reasons for the discrepancies between the results obtained, such as the differences between the cell lines and experimental design, the variation in time of cultivation, and the specific spaceflight related factors, are analyzed.  相似文献   

13.
Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions.  相似文献   

14.
The subcellular distribution of Dp71 isoforms alternatively spliced for exon 71 and/or 78 was examined. The cDNA sequence of each variant was fused to the C-terminus of the green fluorescent protein and the constructs were transfected transiently in the cell lines HeLa, C2C12 and N1E-115. The subcellular distribution of the fused proteins was determined by confocal microscope analysis. The Dp71 isoform lacking the amino acids encoded by exons 71 and 78 was found exclusively in the cytoplasm whereas the variants containing the amino acids encoded by exon 71 and/or exon 78 show a predominant nuclear localization. The nuclear localization of Dp71 provides a new clue towards the establishment of its cellular function.  相似文献   

15.
S Ohki  K S Leonards 《Biochemistry》1984,23(23):5578-5581
Calcium phosphate induced membrane aggregation was studied for erythrocyte vesicles and lipid membrane vesicles. The later lipid membrane components were similar in composition to those of erythrocyte membranes. The presence of an appropriate amount of cholesterol is an important factor in the production of the calcium phosphate dependent membrane aggregation.  相似文献   

16.
17.
Intracellular signals are required to activate the leukocyte-specific adhesion receptor lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) to bind its ligand, intracellular adhesion molecule-1 (ICAM-1). In this study, we investigated the role of the cytoskeleton in LFA-1 activation and demonstrate that filamentous actin (F-actin) can both enhance and inhibit LFA-1-mediated adhesion, depending on the distribution of LFA-1 on the cell surface. We observed that LFA-1 is already clustered on the cell surface of interleukin-2/phytohemagglutinin-activated lymphocytes. These cells bind strongly ICAM-1 and disruption of the actin cytoskeleton inhibits adhesion. In contrast to interleukin-2/phytohemagglutinin-activated peripheral blood lymphocytes, resting lymphocytes, which display a homogenous cell surface distribution of LFA-1, respond poorly to intracellular signals to bind ICAM-1, unless the actin cytoskeleton is disrupted. On resting peripheral blood lymphocytes, uncoupling of LFA-1 from the actin cytoskeleton induces clustering of LFA-1 and this, along with induction of a high-affinity form of LFA-1, via "inside-out" signaling, results in enhanced binding to ICAM-1, which is dependent on intact intermediate filaments, microtubules, and metabolic energy. We hypothesize that linkage of LFA-1 to cytoskeletal elements prevents movement of LFA-1 over the cell surface, thus inhibiting clustering and strong ligand binding. Release from these cytoskeletal elements allows lateral movement and activation of LFA-1, resulting in ligand binding and "outside-in" signaling, that subsequently stimulates actin polymerization and stabilizes cell adhesion.  相似文献   

18.
In this study, we delineated the molecular mechanisms that modulate Dp71 expression during neuronal differentiation, using the N1E‐115 cell line. We demonstrated that Dp71 expression is up‐regulated in response to cAMP‐mediated neuronal differentiation of these cells, and that this induction is controlled at promoter level. Functional deletion analysis of the Dp71 promoter revealed that a 5′‐flanking 159‐bp DNA fragment that contains Sp1 and AP2 binding sites is necessary and sufficient for basal expression of this TATA‐less promoter, as well as for its induction during neuronal differentiation. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that Sp1 and AP2α bind to their respective DNA elements within the Dp71 basal promoter. Overall, mutagenesis assays on the Sp1 and AP2 binding sites, over‐expression of Sp1 and AP2α, as well as knock‐down experiments on Sp1 and AP2α gene expression established that Dp71 basal expression is controlled by the combined action of Sp1 and AP2α, which act as activator and repressor, respectively. Furthermore, we demonstrated that induction of Dp71 expression in differentiated cells is the result of the maintenance of positive regulation exerted by Sp1, as well as of the loss of AP2α binding, which ultimately releases the promoter from repression.  相似文献   

19.
products of the dystrophin gene range from the 427-kDa full-length dystrophin to the 70.8-kDa Dp71. Dp427 is expressed in skeletal muscle, where it links the actin cytoskeleton with the extracellular matrix via a complex of dystrophin-associated proteins (DAPs). Dystrophin deficiency disrupts the DAP complex and causes muscular dystrophy in humans and the mdx mouse. Dp71, the major nonmuscle product, consists of the COOH-terminal part of dystrophin, including the binding site for the DAP complex but lacks binding sites for microfilaments. Dp71 transgene (Dp71tg) expressed in mdx muscle restores the DAP complex but does not prevent muscle degeneration. In wild-type (WT) mouse muscle, Dp71tg causes a mild muscular dystrophy. In this study, we tested, using isolated extensor digitorum longus muscles, whether Dp71tg exerts acute influences on force generation and sarcolemmal stress resistance. In WT muscles, there was no effect on isometric twitch and tetanic force generation, but with a cytomegalovirus promotor-driven transgene, contraction with stretch led to sarcolemmal ruptures and irreversible loss of tension. In MDX muscle, Dp71tg reduced twitch and tetanic tension but did not aggravate sarcolemmal fragility. The adverse effects of Dp71 in muscle are probably due to its competition with dystrophin and utrophin (in MDX muscle) for binding to the DAP complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号