首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro.Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization.The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity.Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.  相似文献   

2.
Neural stem cells (NSCs) raised the hope for cell-based therapies in human neurodevelopmental and neurodegenerative diseases. Current research strategies aim to isolate, enrich, and propagate homogeneous populations of neural stem cells. Unfortunately, several concerns with NSC cultures currently may limit their therapeutic promise. Exhaustion of growth factors and/or their uncontrolled release with burst and fall in their concentration may greatly affect the in vitro behavior of NSCs. In this context, we investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus improve in vitro NSC cultivation. We demonstrated that NSCs cultivated in media with a controlled release of FGF-2 from a polyelectrolyte polymer showed a higher proliferation rate, and reduced apoptosis and senescence. In these experimental conditions NSCs preserve their stemness properties for a longer period of time compared with controls. Also of interest is that cell fate properties are conserved as well. The controlled release of FGF-2 reduced the level of oxidative stress and this is associated with a lower level of damaged DNA. This result may explain the reduced level of senescence and apoptosis in NSCs cultivated in the presence of hydrogel-releasing FGF-2.  相似文献   

3.
Human neural stem cells (hNSC) represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC) has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s) and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC) from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC). T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%). Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in turn, carries a single and well characterized mutation. From a different perspective, these data report on a safe approach to increase human neural stem cells propagation in culture, without altering their basic properties. These T-IhNSC line provides a versatile model for the elucidation of the mechanisms involved in human neural stem cells expansion and for development of high throughput assays for both basic and translational research on human neural cell development. The improved proclivity of T-IhNSC to generate human oligodendrocytes propose T-IhNSC as a feasible candidate for the design of experimental and, perhaps, therapeutic approaches in demyelinating diseases.  相似文献   

4.
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.  相似文献   

5.
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovascular diseases, and traumatic brain injuries, are among the major disorders influencing human health, currently with no effective therapy. Due to the low regeneration capacity of neurons, insufficient secretion of neurotrophic factors, and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss of functional neurons and nerve tissue damage occurs. This damage is difficult to repair and regenerate the central nervous system after injury. Neural stem cells (NSCs) are pluripotent stem cells that only exist in the central nervous system. They have good self-renewal potential and ability to differentiate into neurons, astrocytes, and oligodendrocytes and improve the cellular microenvironment. NSC transplantation approaches have been made for various neurodegenerative disorders based on their regenerative potential. This review summarizes and discusses the characteristics of NSCs, and the advantages and effects of NSCs in the treatment of brain diseases and limitations of NSC transplantation that need to be addressed for the treatment of brain diseases in the future.  相似文献   

6.
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.  相似文献   

7.
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.  相似文献   

8.
Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not account for the improvement. NSCs also increased brain beta-hexosaminidase levels, reduced ganglioside storage and diminished activated microgliosis. Additionally, when oral glycosphingolipid biosynthesis inhibitors (beta-hexosaminidase substrate inhibitors) were combined with NSC transplantation, substantial synergy resulted. Efficacy extended to human NSCs, both to those isolated directly from the central nervous system (CNS) and to those derived secondarily from embryonic stem cells. Appreciating that NSCs exhibit a broad repertoire of potentially therapeutic actions, of which neuronal replacement is but one, may help in formulating rational multimodal strategies for the treatment of neurodegenerative diseases.  相似文献   

9.
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system.  相似文献   

10.
神经干细胞(neural stem cells,NSCs)具有如下特点:(1)可以向神经组织分化或源自神经系统的一部分。(2)具备维持和更新的自主能力。(3)可通过细胞分裂增殖。以上特点决定了它的应用价值,被公认为治疗阿尔茨海默氏病,帕金森氏症,脊髓损伤,中风等神经退行性疾病的最佳方案。用干细胞治疗癌症,免疫相关性疾病,和其他疾病被认为是很有创新的新疗法,可能有一天会扩展到修复和补充大脑损伤。胶质细胞源性神经营养因子(glial Cell line一derived neurotrophic factor,GDNF)为TGF一β超家族的一员,具有很强神经保护作用,大量实验研究证实GDNF可促进帕金森病大鼠模型的中脑神经干细胞定向分化为多巴胺能神经元,同时大量实验发现其可促进神经干细胞增殖及分化,为神经干细胞的应用奠定了基础。  相似文献   

11.
The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0–200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20–40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth.  相似文献   

12.
Neurogenesis is the process in which neurons are generated from neural stem/progenitor cells (NSCs/NPCs). It involves the proliferation and neuronal fate specification/differentiation of NSCs, as well as migration, maturation and functional integration of the neuronal progeny into neuronal network. NSCs exhibit the two essential properties of stem cells: self-renewal and multipotency. Contrary to previous dogma that neurogenesis happens only during development, it is generally accepted now that neurogenesis can take place throughout life in mammalian brains. This raises a new therapeutic potential of applying stem cell therapy for stroke, neurodegenerative diseases and other diseases. However, the maintenance and differentiation of NSCs/NPCs are tightly controlled by the extremely intricate molecular networks. Uncovering the underlying mechanisms that drive the differentiation, migration and maturation of specific neuronal lineages for use in regenerative medicine is, therefore, crucial for the application of stem cell for clinical therapy as well as for providing insight into the mechanisms of human neurogenesis. Here, we focus on the role of bone morphogenetic protein (BMP) signaling in NSCs during mammalian brain development.  相似文献   

13.
14.
Cerebral ischemia is known to activate endogenous neural stem cells (NSCs), but its mechanisms remain unknown. Since lowered glucose supply seems to mediate ischemic actions, we examined the effect of low glucose on NSC activities in vitro. Low glucose applied during the proliferation period diminished EGF-induced proliferation of NSCs without affecting subsequent differentiation, but low glucose directly exposed during the differentiation period facilitated the differentiation of NSCs into neurons and astrocytes. These findings suggest that low glucose facilitated NSC differentiation, but it diminished NSC proliferation. Moreover, the effect of low glucose may be dependent on the timing of application.  相似文献   

15.
Previously, we found safrole oxide could promote VEC apoptosis, however, it is not known whether it can induce NSC apoptosis. It is reported that neural stem cells (NSCs) are localized in a vascular niche. But the effects of apoptosis in vascular endothelial cells (VEC) on NSC growth and differentiation are not clear. To answer these questions, in this study, we co-cultured NSCs with VECs in order to imitate the situation in vivo, in which NSCs are associated with the endothelium, and treated the single-cultured NSCs and the co-cultured NSCs with safrole oxide. The results showed that safrole oxide (10-100 microg/mL) had no effects on NSC growth. Based on these results, we treated the co-culture system with this small molecule. The results showed that the NSCs differentiation, into neurons and gliacytes was induced by VECs untreated with safrole oxide. But in the co-culture system treated with safrole oxide, the NSCs underwent apoptosis. The data suggested that when VEC apoptosis occurred in the co-culture system, the NSC survival and differentiation could not be maintained, and NSCs died by apoptosis. Our finding provided a useful tool for investigating the effect of apoptosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro.  相似文献   

16.
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development.  相似文献   

17.
Neural stem cells (NSCs) are self‐renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro‐inflammatory cytokine interleukin‐18 (IL‐18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL‐18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL‐18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain‐derived and glial cell‐derived neurotrophic factors (BDNF, GDNF) in IL‐18‐stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL‐18 may attribute to the up‐regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases.  相似文献   

18.
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.  相似文献   

19.
Neural stem cell (NSC) transplantation replaces damaged brain cells and provides disease-modifying effects in many neurological disorders. However, there has been no efficient way to obtain autologous NSCs in patients. Given that ectopic factors can reprogram somatic cells to be pluripotent, we attempted to generate human NSC-like cells by reprograming human fibroblasts. Fibroblasts were transfected with NSC line-derived cellular extracts and grown in neurosphere culture conditions. The cells were then analyzed for NSC characteristics, including neurosphere formation, gene expression patterns, and ability to differentiate. The obtained induced neurosphere-like cells (iNS), which formed daughter neurospheres after serial passaging, expressed neural stem cell markers, and had demethylated SOX2 regulatory regions, all characteristics of human NSCs. The iNS had gene expression patterns that were a combination of the patterns of NSCs and fibroblasts, but they could be differentiated to express neuroglial markers and neuronal sodium channels. These results show for the first time that iNS can be directly generated from human fibroblasts. Further studies on their application in neurological diseases are warranted.  相似文献   

20.
Neural stem cells (NSCs) are currently considered powerful candidates for cell therapy in neurodegenerative disorders such as Parkinson's disease. However, it is not known when and how NSCs begin to differentiate functionally. Recent reports suggest that classical neurotransmitters such as acetylcholine (Ach) are involved in the proliferation and differentiation of neural progenitor cells, suggesting that neurotransmitters play an important regulatory role in development of the central nervous system (CNS). We have shown by calcium imaging and immunochemistry that proliferation and differentiation are enhanced by M2 muscarinic Ach receptors (mAchR) expressed on the NSC surface and on their neural progeny. Moreover, atropine, an mAchR antagonist, blocks the enhancement and inhibits the subsequent differentiation of NSCs. Further understanding of this neural-nutrition role of Ach might elucidate fetal brain development, the brain's response to injury, and learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号