首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+-dependent, presumably exocytotic fraction of the [3H]GABA released by depolarization is dissected from the depolarization-induced Na+-dependent, carrier-mediated fraction of [3H]GABA release in mouse brain synaptosomes. GABA homoexchange is prevented by the [3H]GABA carrier blocker, DABA. The absence of external Na+ completely abolishes the release of the carrier-mediated, presumably cytoplasmic release of [3H]GABA induced by homoexchange and heteroexchange with GABA and DABA, respectively. The carrier-mediated, Na+-dependent fraction of the depolarization-induced release of [3H]GABA is resistant to tetrodotoxin (TTX) but is sensitive to amiloride and verapamil. The Ca2+-dependent fraction of the [3H]GABA released by high K+ depolarization is also completely abolished by amiloride (from 300 M) and sensitive to verapamil (30 M), but in contrast is insensitive to the absence of external Na+ and to DABA. On the basis of these results we conclude that amiloride and verapamil inhibit high K+-induced release of [3H]GABA by antagonizing the entrance of Ca2+ (and possibly Na+ when external Ca2+ is absent) through a population of voltage sensitive presynaptic Ca2+ channels activated by depolarization.Depto. de Biología Molecular Instituto de Investigaciones Biomédicas UNAM.  相似文献   

2.
Synaptic plasma membrane (SPM) vesicles were isolated under conditions which preserve most of their biochemical properties. Therefore, they appeared particularly useful to study the cytoplasmic GABA release mechanism through its neuronal transporter without interference of the exocytotic mechanism. In this work, we utilized SPM vesicles isolated from sheep brain cortex to investigate the process of [3H]GABA release induced by ouabain, veratridine and Na+ substitution by other monovalent cations (K+, Rb+, Li+, and choline). We observed that ouabain is unable to release [3H]GABA previously accumulated in the vesicles and, in our experimental conditions, it does not act as a depolarizing agent. In contrast, synaptic plasma membrane vesicles release [3H]GABA when veratridine is present in the external medium, and this process is sensitive to extravesicular Na+ and it is inhibited by extravesicular Ca2+ (1 mM) under conditions which appear to permit its entry. However, veratridine-induced [3H]GABA release does not require membrane depolarization, since this drug does not induce any significant alteration in the membrane potential, which is determined by the magnitude of the ionic gradients artificially imposed to the vesicles. The substitution of Na+ by other monovalent cations promotes [3H]GABA release by altering the Na+ concentration gradient and the membrane potential of SPM vesicles. In the case of choline and Li+, we observed that the fraction of [3H]GABA released relatively to the total amount of neurotransmitter released by K+ or Rb+ is about 28% and 68%, respectively. Since the replacement of Na+ by K+, Rb+, and Li+ causes different levels of membrane depolarization, and the replacement of Na+ by choline causes hyperpolarization of the vesicles, these results suggest that, in parallel to the [3H]GABA release, which is directly proportional to the level of membrane depolarization, this neurotransmitter can be released by decreasing the external Na+, which reflects an elevation of the Na+ concentration gradient (inout). Like veratridine-induced release, the depolarization-induced release of [3H]GABA by SPM vesicles is inhibited by Ca2+, which suggests that this divalent cation interfers with the cytoplasmic GABA release mechanism.Abbreviations used ATPase adenosine triphosphatase - GABA -aminobutyric acid - Mes 2 (N-morpholino)-ethanosulfonic acid - SPM synaptic plasma membranes - membrane potential  相似文献   

3.
Exogenous tritiated -aminobutiric acid ([3H]GABA) is retained in two compartments in sheep cortex synaptosomes, corresponding to cytoplasmic and vesicular spaces, assuming that freeze-thawing the synaptosomes loaded with [3H]GABA releases the cytoplasmic [3H]GABA (81±3.9%), and that subsequent solubilization of the synaptosomes with 1% sodium cholate releases the vesicular [3H]GABA (19±3.9%). Depolarization of synaptosomes with 40 mM K+ in a Na+-medium, in the absence of Ca2+, releases 20.3±2.7% of the [3H]GABA retained in the synaptosomes. The [3H]GABA released under these conditions comes predominantly from the cytoplasm. The presence of 1 mM Ca2+ during depolarization releases and additional 13% (a total of about 33.5±9.9%) of the releasable [3H]GABA, and the [3H]GABA release which is Ca2+-dependent also comes mostly from the cytoplasmic compartment. When choline replaces external Na+, the [3H]GABA release is absolutely Ca2+-dependent, and the [3H]GABA released also comes mostly from the cytoplasmic pool. Therefore, it appears that [3H]GABA taken up by synaptosomes is accumulated mostly in the cytoplasmic compartment from which it is released upon depolarization. The technique described permits distinguishing the effect of different factors on the two pools of accumulated [3H]GABA.  相似文献   

4.
The effect of -Aga IVA, a P-type Ca2+ channel blocker, on the release of the inhibitory neurotransmitter GABA and on the elevation of Cai induced by depolarization was investigated in [3H]GABA and fura-2 preloaded mouse brain synaptosomes, respectively. Two strategies (i.e. 20 mM external K+ and veratridine) that depolarize by different mechanisms the preparation were used. High K+ elevates Cai and induces [3H]GABA release in the absence of external Na+ and in the presence of TTX, conditions that abolish veratridine induced responses. The effect of -Aga IVA on the Ca2+ and Na+ dependent fractions of the depolarization evoked release of [3H]GABA were separately investigated in synaptosomes depolarized with high K+ in the absence of extermal Na+ and with veratridine in the absence of external Ca2+, respectively. The Ca2+ dependent fraction of the evoked release of [3H]GABA and the elevation of Ca2+ induced by high K+ are markedly inhibited (about 50%) in synaptosomes exposed to -Aga IVA (300 nM) for 3 min before depolarization, whereas the Na+ dependent, Ca2+ independent carrier mediated release of [3H]GABA induced by veratridine, which is sensitive to verapamil and amiloride, is not modified by -Aga IVA. Our results indicate that an -Aga IVA sensitive type of Ca2+ channel is highly involved in GABA exocytosis.  相似文献   

5.
The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 M) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.  相似文献   

6.
Abstract— Several parameters of GABA Auxes across the synaptosomal membrane were studied using synaptosomes prepared from the brain of immature (8-day-old) rats. The following aspects of GABA carrier-mediated transport were similar in immature and mature synaptosomes: (1) magnitude of [3H]GABA accumulation; (2) GABA homoexchange in normal ionic conditions; (3) GABA homoexchange in the presence of cationic fluxes (Na+ and Ca2+ influx, K+ efflux) characteristic of physiological depolarization. As in adult synaptosomes (Levi & Raiteri , 1978), in these conditions the stoichiometry of GABA homoexchange was in the direction of net outward transport (efflux > influx). The essential differences between the behaviour of 8-day-old and adult synaptosomes were the following: (1) β-alanine (a glial uptake inhibitor) inhibited GABA uptake in immature synaptosomes (the inhibition being greater in crude than in purified preparations) and was without a significant effect in adult synaptosomes. DABA and ACHC (two neuronal uptake inhibitors) depressed GABA uptake more efficiently in purified than in crude immature synaptosomes, but were as effective in crude and purified nerve endings from adult animals. The data suggest a greater uptake of GABA in the‘gliosomes’contaminating the synaptosomal preparations from immature animals. (2) In immature synaptosomes prelabelled with [3H]GABA the specific radioactivity of the GABA released spontaneously or by heteroexchange (with 300 μm -OH-GABA) was the same as that present in synaptosomes, while in adult synaptosomes OH-GABA released GABA with increased specific radioactivity. The data suggest a homogeneous distribution of the [3H]GABA taken up within the endogenous GABA pool in immature, but not in mature synaptosomes. (3) In immature synaptosomes the release of GABA (radioactive and endogenous) induced by depolarization with high KC was not potentiated by Ca2+, unless the synaptosomes had been previously depleted of Na+ These data suggest that, although a Ca2+ sensitive pool of GABA may be present, this pool is not susceptible to being released in normal conditions, probably because the high intrasynaptosomal Na+ level prevents a sufficient depolarization. The possible significance of these findings in terms of functional activity of GABAergic neurotransmission in the immature brain is discussed.  相似文献   

7.
In this study we investigated the role of external monovalent cations, and of intracellular Ca2+ concentration ([Ca2+]i) in polarized and depolarized rat cerebral cortex synaptosomes on the release of [3H]--aminobutyric acid (3H-GABA). We found that potassium-depolarization, in the absence of Ca2+, of synaptosomes loaded with3H-GABA releases 7.4±2.1% of the accumulated neurotransmitter, provided that the external medium contains Na+, and an additional 19.0±2.5% is released upon adding 1.0 mM CaCl2 to the exterior. The Ca2+-independent release component does not occur in a choline medium and it is only 3.4±0.8% of the3H-GABA accumulated in a Li+ medium, but both ions support the Ca2+-dependent release of3H-GABA (13.4±0.6% in choline and 15.4±1.5% in Li+), which suggests that the exocytotic release is independent of the external monovalent cation present, whereas the carrier-mediated release specifically requires Na+ outside. Furthermore, previous release of the cytosolic3H-GABA due to predepolarization in the absence of Ca2+ does not influence the amount of3H-GABA subsequently released by exocytosis due to Ca2+ addition (19.1±2.5% or 19.1±1.1%, respectively). In choline or Li+ medium, the value of the [Ca2+]i is raised by Na+/Ca2+ exchange to 663±75 nM or 782±54 nM, respectively, within three minutes after adding 1.0 mM Ca2+, in the absence of depolarization, and parallel release experiments show no release of3H-GABA in the choline medium, but a substantial release (7.1±2.1%) of3H-GABA occurs in the Li+ medium without depolarization. Subsequent K+-depolarization shows normal Ca2+-dependent release of3H-GABA in the choline medium (14.1±2.0%) but only 8.6±1.1% release in the Li+ medium, which suggests that raising the [Ca2+]i by Na+/Ca2+ exchange, without depolarization, supports some exocytotic release in Li+, but not in choline media. The role of [Ca2+]i and of membrane depolarization in the release process is discussed on the basis of the results obtained and other relevant observations which suggest that both Ca2+ and depolarization are essential for optimal exocytotic release of GABA.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

8.
The effects of external pH (pH out) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pH out6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 M) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na i ] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca i ] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pH out 6. On the contrary, the external alkalinization (pH out 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pH out was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pH out changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pH out variations on [3H]GABA release were independent on the presence of HCO-3. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.  相似文献   

9.
10.
It has been suggested that mitochondria might modify transmitter release through the control of intracellular Ca2+levels. Treatments known to inhibit Ca2+retention by mitochondria lead to an increased transmitter liberation in the absence of external Ca2+, both at the frog neuromuscular junction and from isolated nerve endings. Sodium ions stimulate Ca2+efflux from mitochondria isolated from excitable tissues. In the present study, the effect of increasing internal Na+ levels on [3H]γ-aminobutyric acid ([3H]GABa) release from isolated nerve endings is reported. Results show that the efflux of [3H]GABA from prelabeled synaptosomes is stimulated by ouabain, veratrine, gramicidin D, and K+-free medium, which increase the internal sodium concentration. This effect was not observed when Na+ was omitted from the incubation medium and it was independent of external Ca2+, the experiments having been performed in a Ca2+-free, EGTA-containing medium. Since preincubation of synaptosomes with 2,4-diaminobutyric acid did not prevent the stimulatory effect of increased internal Na+ levels on [3H]GABA efflux, it appears to be unrelated to an enhanced activity of the outward carrier-mediated GABA transport. These results suggest that the augmented release of [3H]GABA may be due to an increased Ca2+efflux from mitochondria eiicited by the accumulation of Na+ at the nerve endings. Sandoval M. E. Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. J. Neurochem. 35 , 915–921 (1980).  相似文献   

11.
Physiologic-pharmacologic studies in vivo and with tissue cultures have revealed that synaptic GABA receptors exist in the vertebrate CNS. The GABA antagonist, bicuculline, can be used to detect synaptic GABA receptors in both the presence and absence of Na+, even though GABA binding to cerebral subcellular fractions occurs mainly to transport (uptake) receptors in the presence of Na+.  相似文献   

12.
We have investigated the symmetry of Na+-succinate cotransport in rabbit renal brush-border membrane vesicles. Succinate influx and efflux kinetics were measured under voltage-clamped conditions using [14C]succinate and a rapid filtration procedure. Both influx and efflux were Na+-dependent, saturable, temperature-sensitive, and influenced by the trans Na+ and succinate concentrations. The system was judged to be asymmetric, since the maximal velocity for influx was 3-fold higher than that for efflux, and trans Na+ inhibited influx more than efflux. This may be due to the asymmetrical insertion of the transporter in the brush-border membrane, which leads to differences in either the forward and backward translocation rates of the fully loaded carrier or the Na+ and succinate binding constants at the inner and outer faces of the membrane.  相似文献   

13.
  • 1.1. The behaviour of the Na efflux towards Li+ was studied using single barnacle muscle fibres as a preparation.
  • 2.2. It is found that the Na efflux into Li+-ASW (artificial seawater) is reduced and that this effect is not fully reversed by returning back to Na+-ASW.
  • 3.3. Preinjection of 100 mM-EGTA reduces the magnitude of the fall of the Na efflux into Li+-ASW.
  • 4.4(a). The remaining Na efflux into Li+-ASW is further reduced by external application of 10−4 M-ouabain. (b) The remaining Na efflux in ouabain-poisoned fibres is reduced by replacing Nae by Li+. However, some fibres show a rise rather than a fall.
  • 5.5. Fibres loaded with NaCl (by injection) show a prompt and sustained stimulation of the Na efflux when Nae is replaced by Li+. A similar but less pronounced response is often seen with ouabain-poisoned fibres.
  • 6.6. Injection of LiCl (e.g. a 2 M-solution), causes a 20% fall in Na efflux. Subsequent replacement of Nae by Li+ fails to bring about a fall in the remaining efflux.
  • 7.7. Itis concluded that the Na efflux in these fibres consists of a Na-Na exchange diffusion component which is not mediated by the Na-K pump and that its operation is interrupted by injecting Li+. The relative size of this component is about one-fifth and not one-half of the Na efflux.
  相似文献   

14.
The kinetics of sodium dependency of GABA uptake by satellite glial cells was studied in bullfrog sympathetic ganglia. GABA uptake followed simple Michaelis-Menten kinetics at all sodium concentrations tested. Increasing external sodium concentration increased bothK m andV max for GABA uptake, with an increase in theV max/K m ratio. The initial rate of uptake as a function of the sodium concentration exhibited sigmoid shape at 100 M GABA. Hill number was estimated to be 2.0. Removal of external potassium ion or 10 M ouabain reduced GABA uptake time-dependently. The effect of ouabain was potentiated by 100 M veratrine. These results suggest that at least two sodium ions are involved with the transport of one GABA molecule and that sodium concentration gradient across the plasma membrane is the main driving force for the transport of GABA. The essential sodium gradient may be maintained by Na+, K+-ATPase acting as an ion pump.  相似文献   

15.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

16.
In the cerebellum of the reeler mutant mouse, characterized morphologically by depletion of the granule cell population and abnormal synapse formation, increased GABA concentration and alterations in [3H]GABA binding have been observed. This study shows decreased affinity of the Na+-independent, high affinity GABA binding component of synaptosomal membranes and an increased affinity of the Na+-dependent, high affinity GABA binding component in reeler cerebellar homogenate and synaptic membranes. In contrast to the changes in affinity, the number of both Na+-dependent and Na+-independent binding sites was not significantly altered. The decreased affinity of the Na+-independent GABA binding and the increased affinity of the Na+-dependent binding, evidenced only in cerebellar tissue, were interpreted to indicate, respectively, hypo- and hypersensitivity of the postsynaptic and presynaptic elements of cerebellar GABAergic synapses, induced by the depressed excitatory granule cell input and/or the increased mossy fiber contact with the ectopic Purkinje cells.  相似文献   

17.
Abstract— Superfused slices of the rat dentate gyrus were employed to study the release of GABA, glutamate and aspartate, which are considered strong neurotransmitter candidates in this region. The introduction of Ca2+ to a Ca2+-free superfusion medium containing a depolarizing agent augmented the efflux of all three amino acids. The response to application of Ca2+ nearly always occurred within 30 s, the shortest interval tested in these studies. The efflux rate reached a peak within 90 s and then declined to a level slightly greater than the prestimulation baseline. The failure to maintain the maximal rate with continued exposure to Ca2+ and depolarizing influences appeared not to result from a reduction in Ca2+ permeability caused by continuous depolarization. Ca2+ also stimulated the efflux of exogenously loaded radiolabeled GABA, glutamate and aspartate, but not proline. Exogenously loaded GABA was more readily released than endogenous GABA. Otherwise the effects of various treatments on their efflux rates were qualitatively similar. Mg2+ inhibited Ca2+-dependent efflux. Ba2+, but not Mg2+, stimulated amino acid efflux in the absence of Ca2+. Extracellular Na+ was not required to support Ca2+-dependent efflux. Addition of Ca2+ to a Ca2+-free medium in the absence of a depolarizing agent released GABA from the slices, but not glutamate or aspartate. K+-enriched medium and the depolarizing alkaloid, veratridine, stimulated both Ca2+-dependent and Ca2+-independent release processes. Na+-free medium enhanced the Ca2+-independent releasing action of elevated K+. Ca2+-independent release was inhibited by raising the Mg2+ concentration by 15 or 30 mM and appeared to be inhibited by Ca2+ as well. Amino acid output in the absence of Ca2+ is probably not directly related to transmission and is considered to result partially from a general increase in membrane permeability induced by depolarization in a Ca2+-free medium and partially from stimulation of carrier-mediated amino acid efflux. These results support previously suggested transmitter roles for GABA, glutamate and aspartate in the rat dentate gyrus.  相似文献   

18.
Summary A model with a carrier having sites for both amino acid and Na+ can account for AIB (-aminoisobutyric acid) transport kinetics observed in membrane vesicles from SV3T3 (simian virus 40-tranformed Balb/c3T3 cells) and 3T3 (the parent cell line). The main feature of this cotransport model is that Na+ binding to carrier decreases the effectiveK m for AIB transport, Na+ transport kinetics observed in both vesicle systems can be described by passive (possibly facilitated) diffusion. The lag of Na+ transport across the membrane compared to that for AIB, coupled to the Na+-dependent decrease in theK m for AIB, accounts for the overshoot in intravesicular AIB observed for SV3T3 in the presence of an initial Na+ gradient. Extra-vesicular Na+ maintains a derease in theK m for AIB influx before intra-vesicular Na+ has accumulated to balance it with a comparable decrease in theK m for AIB efflux. 3T3 vesicles display little overshoot, and this finding can be explained mostly by a lower carrier affinity for Na+.  相似文献   

19.
The effects of cations on taurine, hypotaurine and GABA uptake were studied in mouse brain slices under identical experimental conditions. The uptakes were all strictly sodium-dependent. The omission or excess of K+ inhibited similarly taurine, hypotaurine and GABA uptake. The effects of omission of Ca2+ or Mg2+ were less pronounced. In both normal-sodium and low-sodium media all uptakes were saturable, consisting of both low-and high-affinity transport components. TheK m constants for both low-and high-affinity transport components of hypotaurine and GABA increased in low-sodium medium, suggesting that sodium ions are necessary for their attachment to possible carrier sites in plasma membranes. In the case of taurine, however, the translation rate rather than the affinity of carrier sites was affected in Na+-free media. More than two sodium ions may be involved in the transport of one hypotaurine and one GABA molecule, whereas the coupling ratio between sodium and taurine was at least three. In its cation dependence hypotaurine uptake thus resembled more GABA uptake than taurine uptake.  相似文献   

20.
The binding of [3H]GABA and retention of [14C]sucrose have been studied in freshly prepared synaptosomal-mitochondrial (P2) fractions of rat cerebral cortex and liver using bicarbonate-buffered medium (containing 147 mEq/liter of N+), and in frozen/thawed crude membrane fractions of rat whole brain and liver using Na+-free Tris HCl medium. GABA-sensitive sites (GSS) and bicucul-line-methiodide-(BMI-) sensitive sites (BMI-SS) were defined as those amounts of [3H]GABA that were sensitive to the displacement by 10–3 M unlabeled GABA or BMI. In the presence of added Na+, two high-affinity GABA-binding processes were detected in the P2fraction of cerebral cortex. The lower-affinity process (likely related mainly to uptake sites) hadK B10–5 M,B max for GSS3 nmol/mg protein, andB max for BMI-SS0.5 nmol/mg protein, whereas the higher-affinity process (likely related to synaptic GABA receptors) hadK B10–7 M,B max for GSS43 pmol/mg protein, andB max for BMI-SS2 pmol/mg protein. Only the higher-affinity process was detected in the liver P2 fraction and it hadK B3.7×10–8 M,B max for GSS0.48 pmol/mg protein, andB max for BMI-SS0.1 pmol/mg protein (i.e., about 1/100 and 1/20 the receptiveB max values of cerebral cortex). This binding process of the liver P2 fraction could represent sites involved in mitochondrial GABA transport. In Na+-free Tris HCl medium, high-affinity [3H]GABA binding appeared to exist in frozen/thawed membrane preparations of both brain and liver when data were expressed on a protein basis. However, this binding to liver membranes was not displaceable by 10–3 M unlabeled GABA, and when these data were expressed on a weight basis and corrected for [3H]GABA present in trapped supernatant fluid of the pellets, no [3H]GABA binding was detected in the liver preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号