首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Lee GJ  Vierling E 《Plant physiology》2000,122(1):189-198
Small heat shock proteins (sHsps) are a diverse group of heat-induced proteins that are conserved in prokaryotes and eukaryotes and are especially abundant in plants. Recent in vitro data indicate that sHsps act as molecular chaperones to prevent thermal aggregation of proteins by binding non-native intermediates, which can then be refolded in an ATP-dependent fashion by other chaperones. We used heat-denatured firefly luciferase (Luc) bound to pea (Pisum sativum) Hsp18.1 as a model to define the minimum chaperone system required for refolding of a sHsp-bound substrate. Heat-denatured Luc bound to Hsp18.1 was effectively refolded either with Hsc/Hsp70 from diverse eukaryotes plus the DnaJ homologs Hdj1 and Ydj1 (maximum = 97% Luc reactivation with k(ob) = 1.0 x 10(-2)/min), or with prokaryotic Escherichia coli DnaK plus DnaJ and GrpE (100% Luc reactivation, k(ob) = 11.3 x 10(-2)/min). Furthermore, we show that Hsp18.1 is more effective in preventing Luc thermal aggregation than the Hsc70 or DnaK systems, and that Hsp18.1 enhances the yields of refolded Luc even when other chaperones are present during heat inactivation. These findings integrate the aggregation-preventive activity of sHsps with the protein-folding activity of the Hsp70 system and define an in vitro system for further investigation of the mechanism of sHsp action.  相似文献   

4.
5.
Small heat shock proteins (sHSPs) are dynamic oligomeric proteins that bind unfolding proteins and protect them from irreversible aggregation. This binding results in the formation of sHSP-substrate complexes from which substrate can later be refolded. Interactions between sHSP and substrate in sHSP-substrate complexes and the mechanism by which substrate is transferred to ATP-dependent chaperones for refolding are poorly defined. We have established C-terminal affinity-tagged sHSPs from a eukaryote (pea HSP18.1) and a prokaryote (Synechocystis HSP16.6) as tools to investigate these issues. We demonstrate that sHSP subunit exchange for HSP18.1 and HSP16.6 is temperature-dependent and rapid at the optimal growth temperature for the organism of origin. Increasing the ratio of sHSP to substrate during substrate denaturation decreased sHSP-substrate complex size, and accordingly, addition of substrate to pre-formed sHSP-substrate complexes increased complex size. However, the size of pre-formed sHSP-substrate complexes could not be reduced by addition of more sHSP, and substrate could not be observed to transfer to added sHSP, although added sHSP subunits continued to exchange with subunits in sHSP-substrate complexes. Thus, although some number of sHSP subunits within complexes remain dynamic and may be important for complex structure/solubility, association of substrate with the sHSP does not appear to be similarly dynamic. These observations are consistent with a model in which ATP-dependent chaperones associate directly with sHSP-bound substrate to initiate refolding.  相似文献   

6.
We examined the role of small Hsp genes (Hsp23 and Hsp40) and heat shock gene Hsr-omega in the thermoadaptation of Drosophila melanogaster inhabiting a highly heterogeneous microsite (Nahal Oren canyon, Carmel massif, Israel). We tested whether interslope differences in Drosophila thermoadaptation, revealed in our previous studies, are associated with the differential expression of these genes. Our results demonstrate an increased expression of the Hsp40 gene in thermotolerant lines subjected to mild heat shock treatment (P < 10(-6), analysis of variance test). A high positive correlation was found between the levels of Hsp40 expression and scores of basal (R = 0.74; P < 0.001, based on the Spearman rank correlation test) and induced thermotolerance (R = 0.78; P < 0.0001), implying a significant contribution of Hsp40 gene in thermoadaptation.  相似文献   

7.
8.
9.
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.  相似文献   

10.
Amino acid sequences of alphaB-crystallin, involved in interaction with alphaA-crystallin, were determined by using peptide scans. Positionally addressable 20-mer overlapping peptides, representing the entire sequence of alphaB-crystallin, were synthesized on a PVDF membrane. The membrane was blocked with albumin and incubated with purified alphaA-crystallin. Probing the membrane with alphaA-crystallin-specific antibodies revealed residues 42-57, 60-71, and 88-123 in alphaB-crystallin to interact with alphaA-crystallin. Residues 42-57 and 60-71 interacted more strongly with alphaA-crystallin than the 88-123 sequence of alphaB-crystallin. Binding of one of the alphaB peptides (42-57) to alphaA-crystallin was also confirmed by gel filtration studies and HPLC analysis. The alphaB-crystallin sequences involved in interaction with alphaA-crystallin were distinct from the chaperone sites reported earlier as binding of the alphaB sequence from residues 42-57 does not alter the chaperone-like function of alphaA-crystallin. To identify the critical residues involved in interaction with alphaA-crystallin, R50G and P51A mutants of alphaB-crystallin were made and tested for their ability to interact with alphaA-crystallin. The oligomeric size and hydrophobicity of the mutants were similar. Circular dichroism studies showed that the P51A mutation increased the alpha-helical content of the protein. While the alphaBR50G mutant showed chaperone-like activity similar to wild-type alphaB, alphaBP51A showed reduced chaperone function. Fluorescence resonance energy transfer studies showed that the P51A mutation decreased the rate of subunit exchange with alphaA by 63%, whereas the R50G mutation reduced the exchange rate by 23%. Similar to wild-type alphaB, alphaB-crystallin peptide (42-57) effectively competed with alphaBP51A and alphaBR50G for interaction with alphaA. Thus, our studies showed that the alphaB-crystallin sequence (42-57) is one of the interacting regions in alphaB and alphaA oligomer formation.  相似文献   

11.
In this study, we isolated and analyzed a small heat shock protein (HSP) of Ostertagia ostertagi (Oo-HSP18). Oo-hsp18 is encoded by a single-copy gene and the full-length cDNA represents an 18-kDa protein. The expression of Oo-hsp18 is highly stage specific and restricted to the adult stage. The protein is synthesized in a tissue-specific manner and localized in the body muscle layer. The levels of Oo-hsp18 mRNAs are sharply induced by heat shock but not by other stressors such as levamisole and H2O2. A vaccination trial with recombinant Oo-HSP18 failed to protect calves against a challenge infection.  相似文献   

12.
13.
14.
15.
The small heat shock protein, HSPB6, is a 17-kDa protein that belongs to the small heat shock protein family. HSPB6 was identified in the mid-1990s when it was recognized as a by-product of the purification of HSPB1 and HSPB5. HSPB6 is highly and constitutively expressed in smooth, cardiac, and skeletal muscle and plays a role in muscle function. This review will focus on the physiologic and biochemical properties of HSPB6 in smooth, cardiac, and skeletal muscle; the putative mechanisms of action; and therapeutic implications.  相似文献   

16.
A cDNA clone, called CLB1, was isolated from a cDNA library from tomato (Lycopersicon esculentum) and characterized. The CLB1 cDNA contains an open reading frame of 1518 bp, and encodes a putative protein of 506 amino acids with a predicted molecular mass of 54 633 Da. The deduced CLB1 amino acid sequence contains a domain that exhibits from 26% to 37% identity with the Ca2+-dependent lipid-binding domains of cytosolic phospholipase A2, protein kinase C, Rabphilin-3A, and Synaptotagmin I of animals. Southern blot analysis indicates that the CLB1 gene belongs to a small gene family in the tomato genome. The CLB1 mRNA is preferentially expressed in fruit tissues.  相似文献   

17.
18.
19.
20.
p26, a small heat shock protein, is thought to protect Artemia embryos from stress during encystment and diapause. Full-length p26 cDNAs were compared and used to determine phylogenetic relationships between several Artemia species. The alpha-crystallin domain of p26 was the most conserved region of the protein and p26 from each Artemia species contained characteristic amino-terminal WD/EPF and carboxy-terminal VPI motifs. Sequence conservation suggested the importance of p26 to oviparously developing Artemia embryos and indicated common functions for the protein during development and stress resistance, although as shown by modeling some species-specific p26 amino acid substitutions may have adaptive significance. The p26 gene obtained from A. franciscana exhibited a unique sHSP intron arrangement with an intron in the 5'-untranslated region. Computer-assisted analysis revealed heat shock elements and other putative cis regulatory sequences but their role in gene regulation is unknown. In contrast to previous results for which Northern blots were analyzed, p26 gene expression was observed in ovoviviparous embryos by use of PCR-based methodology, but the p26 protein was not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号