首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field soils contain localized zones of larger penetration resistance within peds and compacted layers, while cracks and biopores offer low resistance pathways to roots. Root responses to such localized conditions have not been investigated in detail. This study examined what happens to the root elongation rate when roots grew through a layer of hard soil into a layer of looser soil for a 4 day period. The experiment was performed twice; firstly with the shoot in continuous darkness, and secondly with it exposed to a day-night cycle to prevent etiolation of the shoot. Pea seedlings were grown in columns of a sandy loam soil which was packed to bulk densities of 0.85, 1.1, 1.3 or 1.4 Mg/m3 in the top layer and 0.85 Mg/m3 in the bottom layer. The root elongation rate in the top layer of 1.4 Mg/m3 soil (penetrometer resistance=1.8 MPa) was only 55% of the elongation rate in the top layer of 0.85 Mg/m3 soil (penetrometer resistance=0.06 MPa). The elongation rate of roots that had grown through the top layer of 1.4 Mg/m3 soil into the bottom layer of loose soil was reduced by some residual effect of the mechanical impedance. The root elongation rate in the bottom layer of loose soil decreased as the penetrometer resistance of the top layer of soil increased. The daily elongation rate of the roots in the bottom layer that had grown through the 1.4 Mg/m3 soil averaged only about 65% of the elongation rate of the roots that had grown through the 0.85 Mg/m3 soil. This residual effect of mechanical impedance on root elongation persisted for at least 2 days and was more severe in the day-night cycle experiment than in the dark experiment. These results have important implications for modelling root elongation in any soil in which the soil strength changes with distance or with time.  相似文献   

2.
A comparison of penetrometer pressures and the pressures exerted by roots   总被引:1,自引:0,他引:1  
Summary Previous work is reviewed in which the ratio of the pressures required for soil penetration by roots and penetrometers are compared. It appears that this ratio can vary from about 2 to 8 depending on conditions. However, there is very little experimental evidence and most of the work has been inferential.Direct measurements are reported for the stresses exerted by a 1 mm diameter penetrometer probe and by the roots of pea seedlings when penetrating Urrbrae fine sandy loam. Six soil conditions were used: (non-weathered remoulded soil cores + artificially weathered remoulded soil cores + undisturbed field clods) × (confined + unconfined cores or clods). The confinement treatment was to test for any effects of additional restraint to cylindrical root expansion. The weathering and field clod treatments were to test the hypothesis that root elongation is facilitated by tensile failure ahead of the root tip.The principal conclusions are as follows. The laboratory weathering treatment reduced the soil tensile strength by 25%. This resulted in a small but significant reduction in the pressure for root penetration into confined cores. Compared with remoulded non-weathered cores, field clods had a 2 to 3 fold greater penetrometer resistance and a 50% lower tensile strength. The force required for root penetration into unconfined field clods was only 10% greater than for unconfined non-weathered cores. For the former (which is closest to field conditions) the penetrometer had to exert a pressure 5.1 times greater than a root tip in order to penetrate the soil. Penetrometer penetration pressure was independent of probe diameter in the 1–2 mm range in the soil used. Core confinement restricts root radial expansion and modifies the penetration force of metal probes and plant roots.On the basis of the new results it is tentatively concluded that soil tensile failure can facilitate penetration by roots.  相似文献   

3.
Summary Experimental methods are described for observing the behaviour of roots encountering cracks in soil. The proportions of roots which enter a second soil block after crossing a crack of known width were measured. Soil strength was measured with a penetrometer.Results are presented for the proportions of seminal roots of wheat and primary lateral roots of pea which enter moulded soil of various strengths after crossing cracks. Results are also presented for the proportions of seminal roots of pea, rape and safflower which enter undisturbed soil after crossing cracks.It was found that, in all cases, the proportion of roots penetrating the second soil block decreased with increasing crack width and increasing soil strength. Also, a smaller proportion of thinner roots penetrated the second soil block than thicker roots under similar conditions. Root diameter in the cracks was influenced by both crack width and soil strength, and an empirical equation is presented to describe this effect.  相似文献   

4.
Laboski  C.A.M.  Dowdy  R.H.  Allmaras  R.R.  Lamb  J.A. 《Plant and Soil》1998,203(2):239-247
Initial field observations revealed a shallow corn (Zea mays L.) root system on a Zimmerman fine sand in a corn/soybean (Glycine max L.) rotation. Since root distribution influences crop water and nutrient absorption, it is essential to identify factors limiting root growth. The objective of this study was to determine the factor(s) limiting corn rooting depth on an irrigated fine sand soil. Bulk density, saturated hydraulic conductivity, and soil water retention were measured on undisturbed soil cores. Corn root distribution assessed at tasseling over a 3-yr period showed an average of 94% of total root length within the upper 0.60 m of soil with 85% in the upper 0.30 m of soil. Mechanical impedance was estimated with a cone penetrometer on two dates with differing water contents. Cone penetrometer measurements greater than 3 MPa indicated mechanical impedance in soil layers extending from 0.15 to 0.35 m deep. Penetration resistance decreased as soil water content increased. However, soil water contents greater than field capacity were required to decrease penetration resistance below the 3 MPa threshold. Such water saturated conditions only occurred for short periods immediately after precipitation or irrigation events, thus roots usually encountered restrictive soil strengths. The soil layer from 0.15 to 0.60 m had high bulk density, 1.57 Mg m-3. This compacted soil layer, with slower saturated hydraulic conductivities (121 to 138 mm hr-1), held more water than the soil above or below it and reduced water movement through the soil profile. Crop water use occurred to a depth of approximately 0.75 m. In conclusion, a compacted soil layer confined roots almost entirely to the top 0.60 m of soil because it had high soil strength and bulk density. The compacted layer, in turn, retained more water for crop use.  相似文献   

5.
BACKGROUND AND AIMS: The impedance to root growth imposed by soil can be decreased by both mucilage secretion and the sloughing of border cells from the root cap. The aim of this study is to quantify the contribution of these two factors for maize root growth in compact soil. METHODS: These effects were evaluated by assessing growth after removing both mucilage (treatment I -- intact) and the root cap (treatment D -- decapped) from the root tip, and then by adding back 2 micro L of mucilage to both intact (treatment IM -- intact plus mucilage) and decapped (treatment DM -- decapped plus mucilage) roots. Roots were grown in either loose (0.9 Mg m(-3)) or compact (1.5 Mg m(-3)) loamy sand soils. Also examined were the effects of decapping on root penetration resistance at three soil bulk densities (1.3, 1.4 and 1.5 Mg m(-3)). KEY RESULTS: In treatment I, mucilage was visible 12 h after transplanting to the compact soil. The decapping and mucilage treatments affected neither the root elongation nor the root widening rates when the plants were grown in loose soil for 12 h. Root growth pressures of seminal axes in D, DM, I and IM treatments were 0.328, 0.288, 0.272 and 0.222 MPa, respectively, when the roots were grown in compact soil (1.5 Mg m(-3) density; 1.59 MPa penetrometer resistance). CONCLUSIONS: The contributions of mucilage and presence of the intact root cap without mucilage to the lubricating effect of root cap (percentage decrease in root penetration resistance caused by decapping) were 43 % and 58 %, respectively. The lubricating effect of the root cap was about 30 % and unaffected by the degree of soil compaction (for penetrometer resistances of 0.52, 1.20 and 1.59 MPa).  相似文献   

6.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

7.
Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2?MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5?MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ~10% of penetration resistances were >2?MPa at a matric potential of -10?kPa, rising to nearly 50% >2?MPa at - 200?kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.  相似文献   

8.
Channels were formed by seminal roots ofPisum sativum and a steel penetrometer of similar dimeter in blocks of remoulded and weathered soil. For both types of channels, the soil was equilibrated and maintained at –12kPa matric water potential during formation. Small samples of soil containing channels were then excavated and examined using a scanning electron microscope. Sections of root channels were found to contain a clearly differentiated zone of newly remoulded soil containing oriented clay. In contrast to channels created by the rigid steel probe, the newly remoulded zone surrounding root channels did not exhibit either a region of maximum soil compression at the channel surface or a radial pattern of shear failure and compression. This micromorphological evidence suggests that exudates may have an additional role to play in reducing the mechanical strength of soil in the proximity of the root tip. The mechanism is thought to operate through an accumulation of soil water related to solute potential and a resultant increase in matric potential.  相似文献   

9.

Background

We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex.

Methods

Root elongation rates and the length of bare root apex were determined for maize and lupin seedlings in sandy loam soil of various matric potentials (?0.01 to ?1.6 MPa) and bulk densities (0.9 to 1.5 Mg m?3).

Results

Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97).

Conclusion

Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.  相似文献   

10.
We analysed the abundance, spatial distribution and soil contact of wheat roots in dense, structured subsoil to determine whether incomplete extraction of subsoil water was due to root system limitations. Intact soil cores were collected to 1.6 m below wheat crops at maturity on a red Kandosol in southern Australia. Wheat roots, remnant roots, soil pores and root–soil contact were quantified at fresh breaks in the soil cores. In surface soil layers (<0.6 m) 30–40% of roots were clumped within pores and cracks in the soil, increasing to 85–100% in the subsoil (>0.6 m), where 44% of roots were in pores with at least three other roots. Most pores contained no roots, with occupancy declining from 20% in surface layers to 5% in subsoil. Wheat roots clumped into pores contacted the surrounding soil via numerous root hairs, whereas roots in cracks were appressed to the soil surface and had very few root hairs. Calculations assuming good root–soil contact indicated that root density was sufficient to extract available subsoil water, suggesting that uptake is constrained at the root–soil interface. To increase extraction of subsoil water, genetic targets could include increasing root–soil contact with denser root hairs, and increasing root proliferation to utilize existing soil pores.  相似文献   

11.
通过对两个品种白三叶Trifolium repens cv.Haifa(海发)和Trifolium repens cv.Rivendel(瑞文德)盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0~20cm土壤处于干旱状态;重度胁迫:表层0~20cm土壤处于极干旱状态,20~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响.结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0~20cm处于干旱状态时,'海发'在处理后期的净光合速率和水分利用效率升高,根系生长量增大,表现出促进作用,'瑞文德'受到的影响不显著;当表层0~20cm处于极干旱、20~40cm处于干旱状态时,'海发'在处理前期受到轻微影响,随后恢复正常状态,'瑞文德'则受到较严重的影响.随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大.与'瑞文德'相比,在相同时期相同胁迫程度下,'海发'的根冠比没有显著差异,但深根数量大大超过'瑞文德',因而,'海发'的耐旱能力强于'瑞文德'.  相似文献   

12.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

13.
Considerable knowledge exists about the effect of aluminium (Al) on root vitality, but whether elevated levels of Al affect soil microorganisms is largely unknown. We thus compared soils from Al-treated and control plots of a field experiment with respect to microbial and chemical parameters, as well as root growth and vitality. The field experiment was established in a 50-year-old Norway spruce (Picea abies L.) stand where no Al or low concentrations of Al had been added every 7–10 days during the growth season for 7 years. Analysis of soil solutions collected using zero tension lysimeters and porous suction cups showed that Al treatment lead to increased concentrations of Al, Ca and Mg and lower pH and [Ca + Mg + K/Al] molar ratio. Corresponding soil analyses showed that soil pH remained unaffected (pH 3.8), that exchangeable Al increased, while exchangeable Ca and Mg decreased due to the Al treatment. Root in-growth into cores placed in the upper 20 cm of the soil during three growth seasons was not affected by Al additions, neither was nutrient concentration or mortality of these roots. The biomass of some taxonomic groups of soil microorganisms, analyzed using specific membrane components (phospholipid fatty acids; PLFAs), was clearly affected by the imposed Al treatment, both in the organic soil horizon and in the underlying mineral soil. Microbial community structure in both horizons was also clearly modified by the Al treatment. Shifts in PLFA trans/cis ratios indicative of short term physiological stress were not observed. Yet, aluminium stress was indicated both by changes in community structure and in ratios of single PLFAs for treated/untreated plots. Thus, soil microorganisms were more sensitive indicators of subtle chemical changes in soil than chemical composition and vitality of roots.  相似文献   

14.
To penetrate soil, a root requires pressure both to expand the cavity it is to occupy, σn, and to overcome root–soil friction, σf. Difficulties in estimating these two pressures independently have limited our ability to estimate the coefficient of soil–root friction, μsr. We used a rotated penetrometer probe, of similar dimensions to a root, and for the first time entering the soil at a similar rate to a root tip, to estimate σn. Separately we measured root penetration resistance (PR) Qr. Root PR was between two to four times σn. We estimated that the coefficient of root–soil friction (μsr) was 0.21–0.26, based on the geometry of the root tip. This is slightly larger than the 0.05–0.15 characteristic of boundary lubricants. Scanning electron microscopy showed that turgid border cells lined the root channel, supporting our hypothesis that the lubricant consisted of mucilage sandwiched between border cells and the surface of the root cap and epidermis. This cell–cell lubrication greatly decreased the friction that would otherwise be experienced had the surface of the root proper slid directly past unlubricated soil particles. Because root–soil friction can be a substantial component of root PR, successful manipulation of friction represents a promising opportunity for improving plant performance.  相似文献   

15.
格氏栲天然林与人工林根系呼吸季节动态及影响因素   总被引:37,自引:5,他引:32  
通过用挖壕沟 静态碱吸收法对福建三明格氏栲天然林及33年生格氏栲和杉木人工林的根系呼吸进行为期2a定位研究。不同森林根系呼吸速率季节变化均呈单峰曲线,最大值出现在春末或夏初,最小值出现在冬季。1年中格氏栲天然林、格氏栲人工林和杉木人工林根系呼吸速率变化范围分别在157.76~480.40mgCO2/(m2·h)、53.03~339.45mgCO2/(m2·h)和16.66~228.02mgCO2/(m2·h)之间。在近似正常气候状况的2002年,不同森林根系呼吸主要受土壤温度影响(R2=0.52~0.72);而土壤温度和土壤湿度共同则可解释根系呼吸速率季节变化的81%~90%。在极端干旱的2003年,根系呼吸受土壤温度或湿度的影响较小,土壤温度和土壤湿度共同仅能解释根系呼吸变化的24%~60%,这与根系在持续干旱期间长期处于近休眠状态有关。根系呼吸对土壤温度和土壤湿度的敏感性大小顺序均为杉木人工林>格氏栲人工林>格氏栲天然林。格氏栲天然林根系呼吸占土壤呼吸比例(47.6%)均高于格氏栲和杉木人工林的(42.5%和40.2%),不同森林根系呼吸占土壤呼吸比例均以冬季最低,而以5月或6月最高。格氏栲天然林、格氏栲人工林和杉木人工林根系呼吸年通量分别为6.537、4.013和1.828tC/(m2·h)。  相似文献   

16.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

17.
A field experiment was conducted to evaluate the influence of root diameter on the ability of roots of eight plant species to penetrate a compacted subsoil below a tilled layer. The soil was a fine sandy loam red-brown earth with a soil strength of about 3.0 MPa (at water content of 0.13 kg kg-1, corresponding to 0.81 plastic limit) at the base of a tilled layer. Relative root diameter (RRD), which was calculated as the ratio of the mean diameters of roots of plants grown in compacted soil to the mean diameters of those from uncompacted soil, was used to compare the sensitivity of roots to thicken under mechanical stress.Diameters of root tips of plants grown in soil with a compacted layer were consistently larger than those from uncompacted soil. Tap-rooted species generally had bigger diameters and RRDs than fibrous-rooted species. A higher proportion of thicker roots penetrated the strong layer at the interface than thinner roots. There were differences between plant species in the extent to which root diameter increased in response to the compaction. The roots which had larger RRD also tended to have higher penetration percentage.The results suggest that the size of a root has a significant influence on its ability to penetrate strong soil layers. It is suggested that this could be related to the effects which root diameter may have on root growth pressure and on the mode of soil deformation during penetration.  相似文献   

18.
用容重分别为1.20和1.55 g·cm-3的土壤进行盆栽试验,研究了土壤紧实胁迫对‘津春4号’黄瓜根系呼吸代谢的影响.结果表明: 土壤紧实胁迫条件下,黄瓜根系中丙酮酸脱羧酶、乙醇脱氢酶和乳酸脱氢酶活性显著提高;无氧呼吸主要产物(乙醇、乙醛和乳酸)含量显著升高;参与有氧呼吸的苹果酸脱氢酶、琥珀酸脱氢酶和异柠檬酸脱氢酶活性显著下降,丙酮酸和琥珀酸含量显著提高,苹果酸含量显著下降.说明在土壤紧实胁迫条件下,黄瓜根系的有氧呼吸受到显著抑制,无氧呼吸过程加强.  相似文献   

19.
杨柴对高CO2浓度和土壤干旱胁迫的响应   总被引:11,自引:0,他引:11  
毛乌素优势植物杨柴 (HedysarummongolicumTurcz.)对高CO2 浓度和土壤干旱胁迫响应的研究结果表明 :干旱胁迫可使杨柴根系伸长 ,根生物量、地径、主茎高和茎生物量下降 ;高CO2 浓度使杨柴根和茎生物量明显增加 ,CO2 的“施肥效应”显著 ,干旱使CO2 的“施肥效应”减弱。同时 ,土壤干旱胁迫使杨柴的根 /冠比增加 ,说明在土壤干旱胁迫情况下根的生长比地上部分 (茎 )的生长更活跃 ,有利于提高杨柴在干旱沙漠地区的固沙作用 ;CO2 浓度升高和土壤干旱胁迫均使杨柴叶片的水势下降 ,叶片水势的下降使叶片细胞对水分的束缚力增强 ,从而减少植物蒸腾耗水 ,有利于提高水资源的利用效率  相似文献   

20.
Summary Maximum penetrometer pressure was measured on artificial soil aggregates of finite size (2–29 mm) using blunt probes (total cone angle 60°) driven at 3 mm min−1. Maximum penetrometer pressure increased asymptotically with increase in dimensionless aggregate radius,b/a, wherea andb are the probe and aggregate radii, respectively. A theory was developed for penetration of blunt probes into soil aggregates of finite size. The theory assumed that plastic failure occurs out to a radius,R, and that beyond this only elastic straining occurs. This theory can be applied to estimate the radial and tangential stresses adjacent to a blunt probe. The estimated radial and tangential stresses increased with increase in dimensionless aggregate radius,b/a. The radius of the plastic front,R, around the probe is predicted to increase with increased aggregate size. The results also demonstrate the effect of soil shear cohesion and internal friction angle onR. The results are discussed with reference to root penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号