首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our studies and other investigations have shown that NK effector cells can also mediate antibody-dependent cellular cytotoxicity (ADCC) through the use of the Fc gamma receptor on the NK cell membrane. Peripheral blood lymphocytes (PBL) derived from patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex exhibit a poor NK activity due to a defective "trigger" required for activation in the lethal hit stage of the NK lytic pathway. Consequently, it was important to delineate whether the defect in AIDS NK cells affected the ADCC function. By using the 51Cr-release assay, the ADCC cytotoxic activity of AIDS PBL was found to be within the normal range, despite the absence of significant NK activity. Several experiments corroborated that the same effector cells mediate both NK CMC and ADCC. Depletion of Fc gamma R-bearing cells resulted in elimination of both the ADCC and NK cytotoxic functions. Single cell analyses, using one- and two-target cell conjugates, revealed that the frequency of ADCC effector:target conjugates and the frequency of killer cells from AIDS PBL were comparable to the frequencies seen in the normal controls. However, when mixtures of NK and ADCC targets were used to form mixed two-target conjugates, the AIDS effector cells lysed only the bound ADCC target, whereas the normal effector cells lysed both the bound NK and ADCC targets. These results demonstrate clearly that the same NK/K effector cells from AIDS PBL, defective in NK activity, are not impaired in mediating ADCC activity. These findings were supported by the demonstration that AIDS PBL stimulated with ADCC targets, but not with NK targets, released NK cytotoxic factors, postulated mediators of the NK CMC reaction. These findings indicate that the NK/K cells in AIDS are triggered normally for ADCC activity but are not triggered for NK activity. Furthermore, the results indicate that the lytic machinery is not impaired in the AIDS NK/K cells.  相似文献   

2.
A highly purified preparation of lipomodulin, a phospholipase-inhibitory protein from rabbit neutrophils treated with glucocorticoids, inhibited NK and antibody-dependent cellular cytotoxicity (ADCC) activities of human peripheral blood lymphocytes in a dose-dependent manner. The presence of lipomodulin during the early period of the cytotoxicity assay was necessary to obtain maximal inhibition. The inhibition of NK or ADCC activity by lipomodulin was greater when effector cells were treated with lipomodulin than when target cells were incubated with lipomodulin. As lipomodulin did not block binding of effector cells to target cells, our results suggest that lipomodulin inhibits the cytolytic phase of NK and ADCC activities after binding to target cells, and imply that phospholipase(s) may be involved in NK and ADCC activities.  相似文献   

3.
Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the "early" ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors.  相似文献   

4.
The highly conserved matrix protein 2 (M2) is a good candidate for the development of a broadly protective influenza vaccine that induces long-lasting immunity. In animal models, natural killer (NK) cells have been proposed to play an important role in the protection provided by M2-based vaccines through a mechanism of antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated the ability of the human anti-M2 Ab1-10 monoclonal antibody (mAb) to activate human NK cells. They mediated ADCC against M2-expressing cells in the presence of Ab1-10 mAb. Furthermore, NK cell pro-inflammatory cytokine and chemokine secretion is also enhanced when Ab1-10 mAb is present. We also generated cytokine-preactivated NK cells and showed that they still displayed increased effector functions in the presence of Ab1-10 mAb. Thus, our study has demonstrated that human resting and cytokine-preactivated NK cells may have a very important role in the protection provided by anti-M2 Abs.  相似文献   

5.
Summary Administration of a single dose of C. parvum (CP) induces depression of splenic NK activity in mice after a lag period of 3–5 days and this depression lasts about 2 weeks. The depressed levels of NK activity noted in this study depended on time of CP administration and were associated with the induction of suppressor cell activity. Neonatally thymectomized or sublethally irradiated mice had unimpaired ability to generate suppressor cells following CP treatment. Depletion of adherent/phagocytic cells by carbonyl iron plus magnetism, Sephadex G-10 filtration, or both neither enriched NK activity nor removed suppressor activity from the spleens of CP-treated mice. Antibody-dependent cellular cytotoxicity (ADCC) against lymphoma targets was also depressed in CP-treated mice, accompanied by a concomitant appearance of suppressor cells that interfere with ADCC at the effector level.  相似文献   

6.
Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.  相似文献   

7.
Elotuzumab is a monoclonal antibody in development for multiple myeloma (MM) that targets CS1, a cell surface glycoprotein expressed on MM cells. In preclinical models, elotuzumab exerts anti-MM efficacy via natural killer (NK)-cell-mediated antibody-dependent cellular cytotoxicity (ADCC). CS1 is also expressed at lower levels on NK cells where it acts as an activating receptor. We hypothesized that elotuzumab may have additional mechanisms of action via ligation of CS1 on NK cells that complement ADCC activity. Herein, we show that elotuzumab appears to induce activation of NK cells by binding to NK cell CS1 which promotes cytotoxicity against CS1(+) MM cells but not against autologous CS1(+) NK cells. Elotuzumab may also promote CS1–CS1 interactions between NK cells and CS1(+) target cells to enhance cytotoxicity in a manner independent of ADCC. NK cell activation appears dependent on differential expression of the signaling intermediary EAT-2 which is present in NK cells but absent in primary, human MM cells. Taken together, these data suggest elotuzumab may enhance NK cell function directly and confer anti-MM efficacy by means beyond ADCC alone.  相似文献   

8.
The abilities of unfractionated mononuclear cells (MNC), monocytes (98-99% pure), and lymphocytes (98-99% pure) to carry out the lysis of target cells in the ADCC, NK, NOCC, and MICC assays were compared. Lymphocytes by themselves were able to lyse the CRBC (ADCC), K-562 (NK), and RRBC (MICC) target cells. The monocytes were very effective in the lysis of the CRBC (MICC) target cells. However, the lysis of two other target cells--RRBC (NOCC) and HRBC (ADCC)--required the simultaneous presence of both lymphocytes and monocytes in order to effect optimal lysis. Soluble factor(s) secreted by the cytotoxic cells capable of lysing the target cells were detected only in the NK assay. The activity of the soluble cytotoxic factor (NKCF) was only 25-40% of that exhibited by the cytotoxic NK cells and it was secreted by the cytotoxic cells after 48 hr of culture and not 24 hr of culture which is the usual assay condition. The NKCF was cytotoxic only to the NK target cells and not to the target cells used in the ADCC, NOCC, and MICC cytotoxic assays. Different classes of lymphocytes were cytotoxic in the monocyte-independent assays [ADCC (CRBC), NK (K-562), and MICC (RRBC)]. The null lymphocytes and the T lymphocytes were the primary cytotoxic cells in the ADCC and MICC assays, respectively, whereas the T, B, and null cells were almost equally cytotoxic in the NK assay. With respect to the monocyte-dependent assays [ADCC (HRBC), NOCC (RRBC), and MICC (CRBC)], the cytotoxic activity of any one class of lymphocytes failed to approach that of the unfractionated MNC. The T cells were the most cytotoxic; the B cells exhibited limited cytotoxic activity in only the ADCC assay and the null cells showed no cytotoxic activity. However, the combination of T and non-T cells and, to a lesser extent, T and B cells, exhibited much greater cytotoxic activity than the individual cells and together were as cytotoxic as the unfractionated MNC. It is concluded that, depending upon the selection of the target cells, lysis in the ADCC, NK, NOCC, and MICC assays may be effected by lymphocytes only, by monocytes only, by both monocytes and lymphocytes, or as a result of lymphocyte-monocyte collaboration. In the latter instance more than one class of lymphocytes must be present in order for maximum cytotoxic activity to be expressed.  相似文献   

9.
Studies have been performed on the in vitro immunologic effects of homogeneous recombinant human leukocyte interferon, IFLrA. Large granular lymphocytes, enriched for natural killer (NK) cell activity, were pretreated wtih IFLrA or natural interferon preparations and then tested for augmentation of NK activity and of antibody-dependent cell-mediated cytoxicity (ADCC). Monocytes were tested for cytolytic and cytostatic activity in 48–72 hr radioisotopic assays performed in the presence or absence of interferon. Treatment with IFLrA caused significant augmentation of NK, ADCC, and monocyte-mediated cytotoxic activities. Even 10 units of IFLrA induced augmentation of NK activity, and 100 units or more boosted monocyte-mediated activity. The effects in each of these assays were species-specific, with no detectable effects on the activity of mouse effector cells. These results indicate that homogeneous recombinant interferon has potent in vitro immunomodulating effects and thus provide a basis for carefully examining the in vivo effects of this protein on host defenses in forthcoming clinical trials with cancer patients.  相似文献   

10.
Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.  相似文献   

11.
The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia.  相似文献   

12.
Bombesin and the two mammalian bombesin-related peptides, gastrin-releasing peptide (GRP) and neuromedin C, at physiological concentrations have been previously shown to stimulate significantly in vitro the antibody-dependent cellular cytotoxicity (ADCC) and natural killer (NK) activities in BALB/c mouse leukocytes from axillary nodes, spleen and thymus. In the present work we have shown that adherent cells are required in leukocyte samples for stimulation of cytotoxicity by the neuropeptides, which suggests that this effect may be mediated by those cells. Here we demonstrate the specificity of the effects by reversing them in the presence of the bombesin-antagonist (Leu13-ΨCH2NH-Leu14)-BN, and by detecting specific receptors for GRP on macrophages of high and low affinity. Using the same binding technics, no receptors for this neuropeptide were found in non-adherent leukocytes.  相似文献   

13.
Intraperitoneal injection of Leu-enkephalin (LENK, 10 or 7.5 mg/kg) induced bidirectional modulation of natural cytotoxic activities in spleens of CBA mice (suppression followed by enhancement). NK-cytotoxic activity was more affected than the ADCC. Early suppression of NK activity could be reversed by 4 x M excess of naloxone injected 20 min before LENK, suggesting that the suppression was mediated by opioid receptors. Subsequent increase of NK activity could not be abrogated by naloxone, at least not completely. Naloxone itself decreased NK activity 12 hours after treatment, but enhanced ADCC at 24 and 48 hours. This increase was abrogated by LENK. In addition to functional alterations, LENK also induced phenotypic changes of spleen cells, i.e. a decrease in the percentage of asialo-GM-1+ cells 24 hours posttreatment. There was no correlation between LENK-induced alterations of cytotoxic function and the percentage of cells with NK phenotype (GM-1+). Thus, LENK modulates cytolytic functions and the phenotype of NK cells in vivo in a complex way, which besides opioid mechanisms may also include non-opioid ones.  相似文献   

14.
The effect of Parotis virus on antibody-dependent cellular cytotoxicity in vitro (ADCC) of human lymphocytes was investigated in a 51Cr-release assay and, at the effector cell level, in an ADCC plaque assay. Target cells were bovine or chicken erythrocytes, which are not susceptible to natural cytotoxicity (NK) of human lymphocytes. They were not killed when incubated with virus-treated lymphocytes in the absence of antibodies. Treatment of the lymphocytes or the target cells with small amounts of virus, however, resulted in a very significant enhancement of ADCC. The same results were obtained with live or UV-inactivated virus, suggesting that enhancement was a passive phenomenon not requiring infection. Enhancement was already significant after 3 hr of incubation, indicating that it was independent of endogenously released interferon. Enhancement of ADCC by virus was due to effector cell recruitment rather than due to the increase of the cytotoxic potential of the individual K cell. The highest frequency of effector cells was present in Percoll fractions enriched in large granular lymphocytes (LGL). Virus treatment resulted in recruitment of effector cells carrying T cell markers such as the T3 antigen (OKT3+), receptors for sheep erythrocytes, or Fc receptors for IgM. In contrast, the absolute number of K cells carrying the HNK-1 marker (Leu-7) or receptors for C3 fragments was not changed by the virus. It is concluded that Parotis virus enhances ADCC by improving effector cell-target cell contacts, resulting in recruitment of effector cells with T cell characteristics. Recruitment is accompanied by a significant reduction of the antibody concentration needed for ADCC induction. This virus-mediated enhancement of ADCC may be of importance for protection of the host in the early phases of a virus infection in which the amounts of anti-viral IgG antibodies capable of inducing cellular cytotoxicity may yet be very small.  相似文献   

15.
Zhao  Hui  Zhou  Zhenlong  Li  Guangmeng  Liu  Gang  Lin  Shuyin  Chen  Wei  Xiong  Sheng 《Cytotechnology》2021,73(4):539-553

Natural killer (NK) cells are known to play a role in mediating innate immunity and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) based on the reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, devoid of CD16 and derived from a lymphoma patient, has been well characterized. The adoptive transfer of irradiated NK-92 cells demonstrated safety and showed preliminary evidence of clinical benefit for cancer patients. The molecules 41BB and CD3 are commonly used as stimulators in the CAR structure, and their expression in NK cells can promote the activation of NK cells, leading to the enhanced perforin- and granzyme-mediated lysis of tumor cells. This study showed that genetically modified NK-92 cells combined with antibody-mediated ADCC using rituximab and trastuzumab monoclonal antibodies lysed tumor cells more efficient than the NK-92 cell lines. It also showed that the anti-tumor activity of chimeric stimulator molecules of the CAR-modified CD16 receptor was stronger than that of CD16 (allotype V158). These studies provide a rationale for the use of genetically modified NK-92 cells in combination with IgG1 anti-tumor monoclonal antibodies. We also provide a rationale for the chimeric modified CD16 receptor that can improve the anti-tumor effect of NK92 cells via ADCC.

  相似文献   

16.
Normal murine splenocytes cultured with IL2 for 6, but not 3, days contained an NK1.1+, CD3+ lytically active subset. These lymphocytes were not derived from NK1.1+ precursors since NK1.1+ cells, purified by flow cytometry, failed to express CD3, as determined by the 145-2C11 mAb, on their surface even after culture with IL2 for 6 days. Instead, the precursors of the NK1.1+, CD3+ effectors were contained in a B cell-depleted CD4-, CD8-, NK1.1- splenic subset. Freshly obtained CD4-, CD8-, NK1.1- splenocytes were mostly CD3+, CD5+, B220-, had no spontaneous lytic activity against YAC-1, and were unable to mediate anti-CD3 directed lysis against FcR-bearing target cells. Culture of the CD4-, CD8-, NK1.1- splenocytes with IL2, for 6 days, resulted in the development of NK1.1+, CD3+, B220+ effectors 40% of which were CD5dim and 20-25% of which expressed TCR-V beta 8 as determined by the F23.1 mAb. The acquisition of NK1.1, B220, and lytic activity by this triple-negative subset was readily inhibited by cyclosporine A (CSA). On the other hand, CSA had no effect on the acquisition of B220 or lytic activity by NK1.1+ precursors obtained by flow cytometry sorting. Moreover, all of the NK1.1+ cells generated by IL2 culture of splenocytes obtained from mice depleted of NK1.1+ lymphocytes (by in vivo injection of anti-NK1.1 mAb) coexpressed CD3 on their surface and were thus distinct from classical NK cells. These findings demonstrate that splenic NK cells do not express or acquire CD3; that the NK1.1+, CD3+ LAK effectors are derived from an NK1.1- precursor; and that CSA is exquisitely selective in its inhibitory effect on LAK generation.  相似文献   

17.
The immunologic work-up of eight infants with the clinical diagnosis of severe combined immunodeficiency (SCID) was performed with special emphasis on natural killer (NK) cell function and ontogeny. Contrary to previous reports, our study shows that not all SCID patients lack NK activity; some may even express very high NK- and antibody-dependent cellular cytotoxicity (ADCC). The present group of eight SCID infants was homogeneous with respect to normal levels of the purine metabolism enzymes adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). They all had low serum Ig levels and were defective for specific antibody formation against BSA and diphtheria toxin (DiT). None of the infants' peripheral blood mononuclear cells (PBMC) proliferated significantly upon in vitro stimulation with PHA, concanavalin A (Con A), pokeweed mitogen (PWM), and irradiated allogeneic lymphocytes. Seven of eight patients, however, responded significantly to mitogenic factors present in a lectin-free interleukin 2 (IL 2) preparation, and two exhibited a positive costimulation as well with simultaneous exposure to IL 2 + Con A. The lymphocyte marker analysis revealed high percentages of OKT10+ cells in seven of eight infants, whereas peripheral T cells (OKT3+) with suppressor/killer (OKT8+) or helper/inducer (OKT4+) phenotypes were abnormally low in all infants with one exception. The PBMC of two patients formed low to normal percentages of E rosettes but expressed no B cell markers (B-/SCID). The six other infants had high percentages of B cells (B+/SCID) but lacked E rosette-forming cells. High NK and ADCC activity was found in the two B-/SCID patients. The B+/SCID infants either totally lacked NK and ADCC function (four of six) or expressed low to normal NK activity together with some T cell markers as revealed by monoclonal antibody staining but not by E rosette formation (two of six). From the data presented, an ontogenic model is proposed that assumes the status of an independent cell lineage in between T cells and monocytes for human NK cells, or that places these cells in close proximity to early differentiation steps of the T cell lineage. In any case, NK cell function clearly constitutes an additional parameter of heterogeneity in the immunologic analysis of SCID.  相似文献   

18.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

19.
CD27, a member of the TNF receptor superfamily, has been implicated in T cell activation, T cell development, and T cell-dependent Ab production by B cells. In the present study we examined the expression and function of CD27 on murine NK cells. Murine NK cells constitutively expressed CD27 on their surface. Stimulation with immobilized anti-CD27 mAb or murine CD27 ligand (CD70) transfectans solely could induce proliferation and IFN-gamma production of freshly isolated NK cells and enhanced the proliferation and IFN-gamma production of anti-NK1.1-sutimulated NK cells. Although NK cell cytotoxicity was not triggered by anti-CD27 mAb or against CD70 transfectants, prestimulation via CD27 enhanced the cytotoxic activity of NK cells in an IFN-gamma-dependent manner. These results suggest that CD27-mediated activation may be involved in the NK cell-mediated innate immunity against virus-infected or transformed cells expressing CD70.  相似文献   

20.
The present study strongly suggests that, in humans, natural killer (NK) activity and antibody-dependent cell-mediated cytotoxicity (ADCC) are mediated by the same effector cell population. This is supported by two different experimental approaches. First, competition for NK effector cells was accompanied by simultaneous inhibition of ADCC activity. Target cells sensitive to NK activity were capable of inhibiting specifically an ADCC assay in cold target competition experiments. Second, specific removal of NK cells on monolayers formed by target cells sensitive to NK activity caused simultaneous depletion of ADCC effector cells. In association with the removal on the monolayers of effector cells for ADCC as well as NK activity, we also found a significant depletion of cells bearing Fc gamma receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号