首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent investigations have implicated that the central nervous system has a role in the changes that occur in auditory function following acoustic trauma caused by noise exposure. These investigations indicate that the inferior colliculus may be the primary anatomical location in the ascending auditory pathway where noise-induced neuronal plasticity occurs, thereby resulting in changes in the neuronal processing of auditory information. In the present investigation, we show that the amplitudes of all peaks in the click-evoked response from the external nucleus of the inferior colliculus decrease during a 30 min exposure to a tone (104 dB sound pressure level (SPL) at 4 kHz and 8 kHz). After tone exposure, the amplitudes of two of the peaks of the response from the external nucleus of the inferior colliculus that reflect the input from more caudal structures slowly returned to baseline levels, whereas the amplitudes of the two peaks reflecting neuronal activity in the inferior colliculus increased above baseline levels and remained at the increased levels for at least 90 min following exposure to the tone.We also show that exposure to a 4 kHz tone at 104 dB SPL causes changes in the neuronal processing of tonebursts in the form of changes in the temporal integration function for one of the peaks of the response from the external nucleus of the inferior colliculus that originates in the inferior colliculus. Before tone exposure the amplitude of this peak decreased with increasing stimulus duration, but after tone exposure the amplitude of this peak was independent of the duration of the toneburst stimulus.We interpret these changes as evidence that noise exposure (tone exposure) causes changes in the excitability of the inferior colliculus that are not seen in more caudal structures, and these changes are probably a result of a change in the balance between inhibition and excitation in the inferior colliculus.  相似文献   

2.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

3.
Under free-field stimulation conditions, corticofugal regulation of auditory sensitivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus, was studied by blocking activities of auditory cortical neurons with Lidocaine or by electrical stimulation in auditory cortical neuron recording sites. The corticocollicular pathway regulated the number of impulses, the auditory spatial response areas and the frequency-tuning curves of inferior colliculus neurons through facilitation or inhibition. Corticofugal regulation was most effective at low sound intensity and was dependent upon the time interval between acoustic and electrical stimuli. At optimal interstimulus intervals, inferior colliculus neurons had the smallest number of impulses and the longest response latency during corticofugal inhibition. The opposite effects were observed during corticofugal facilitation. Corticofugal inhibitory latency was longer than corticofugal facilitatory latency. Iontophoretic application of γ-aminobutyric acid and bicuculline to inferior colliculus recording sites produced effects similar to what were observed during corticofugal inhibition and facilitation. We suggest that corticofugal regulation of central auditory sensitivity can provide an animal with a mechanism to regulate acoustic signal processing in the ascending auditory pathway. Accepted: 15 July 1998  相似文献   

4.
The influence of neonatal deafness on cochlear electrically evoked Fos expression in the auditory brainstem was examined. Newborn rats were deafened by systemic injection of kanamycin, 1 mg/g daily for 12 days. At 4, 5, 6 or 8 weeks of age, these animals received cochlear electrical stimulation with a basal monopolar electrode for 90 minutes. Age-matched untreated control animals received similar stimulation. Experimental and control animals were assessed for spiral ganglion cell densities and Fos immunoreactive staining in the central nucleus of the inferior colliculus. Spiral ganglion cell assessments showed significant decreases in spiral ganglion cell densities in deafened rats compared to age-matched controls, at 5 weeks of age in lower turns and 6 and 8 weeks in all turns. Cochlear electrical stimulation induced Fos immunoreactive staining in the nucleus of auditory brain stem neurons in treatment and control groups. A significantly greater number of Fos immunoreactive neurons was found in the contralateral central nucleus of inferior colliculus in 5, 6 and 8 week old deafened animals compared to age-matched controls. The increases were larger with a longer duration of deafness. These results suggest that there are changes in auditory processing as a consequence of neonatal deafness.  相似文献   

5.
Summary The absolute volumes of the hippocampal and subicular cortical layers in the rat were determined. The boundaries of the various layers were defined on series of sections made through the entire hippocampal region of five rats and stained according to the Timm sulfide silver technique. Coordinates representing the boundaries of the layers on selected sections were fed into a mini-computer programmed to calculate the volume of the layers from the areas of the profiles and the distances between the sections. The distribution of the layers indicates that they constitute the same proportion of the volume of the dorsal and ventral divisions of the hippocampal region, with the exception of the structures lying in regio inferior and regio superior. Although the combined regio superior and regio inferior components of the layers of Ammon's horn occupy the same percentage of the volume of the dorsal and ventral hippocampal regions, the regio superior components occupy a larger percentage of Ammon's horn in the dorsal region than they do in the ventral region. The inter-animal variations in the volumes of the various layers indicate that it is possible to describe quantitatively the subdivisions of the hippocampal region with a precision that is compatible with comparative studies.  相似文献   

6.
The aspartic acid, glutamic acid, and gamma-aminobutyric acid (GABA) contents were determined in four central auditory system regions in rats with transient neonatal hypothyroidism compared with control ones: the ventral and dorsal parts of the cochlear nucleus, the central nucleus of the inferior colliculus, the auditory cortex, and in an extra-auditory structure, the substantia nigra pars reticulata. The animals were sacrificed at 50 days of age, brain tissue samples were taken out by microdissection, and the free amino acids were extracted. The amino acid content was assessed by double-isotope labelling following two-dimensional thin-layer chromatography separation. GABA content was significantly decreased in both cochlear nucleus regions and glutamic acid was elevated in the inferior colliculus. Neonatal hypothyroidism had no significant effect on the aspartic acid levels in the regions studied. The results suggest an effect of neonatal hypothyroidism on regional contents of free amino acids known as candidate neurotransmitters in the auditory system.  相似文献   

7.
Comparative analysis was performed of sensitivity of three populations of neurons of the inferior colliculus central nucleus and of neurons of the auditory cortex A1 and AAF fields of the house mouse Mus musculus to series of signals of wideband noise with spectral notch shifting along the frequency axis and to series of the band noise signals with shifting band. Sensitivity to spectral notches in noise was estimated from a change of impulse activity depending on notch location on the frequency axis (modulation coefficients were determined as the normalized difference between the maximal and minimal spike number in neuronal responses to all noises with notch exposed in the series). It was shown that the highest modulation coefficient values and accordingly the highest frequency-dependent sensitivity to spectral notches in the noise were peculiar to inhibition-dependent inferior colliculus neurons. Statistical analysis confirmed that distribution of modulation coefficients for the group of the inhibition-dependent neurons differed statistically significantly from the distribution for groups of primary-like and V-shaped inferior colliculus neurons as well as of cortical neurons (U-test, p < 0.0001). The lowest sensitivity to spectral notches was revealed in the V-shaped inferior colliculus neurons and cortical neurons; in these groups, distribution of modulation coefficients did not differed statistically significantly (p > 0.3). Thus, although a part of cortical neurons does have the frequency-dependent selectivity to spectral localizationally informative changes in sound signals, its formation needs participation of the inferior colliculus and its inhibition-dependent neurons. Selectivity to direction of the shift of spectral changes in noise signals in neurons of the inferior colliculus and auditory cortex was similar and was manifested mainly as shift along the frequency axis of dependences of the spike number in the neuronal responses and latent periods on central frequency of notch in noise (the noise band).  相似文献   

8.
The specific adaptation of neuronal responses to a repeated stimulus (Stimulus-specific adaptation, SSA), which does not fully generalize to other stimuli, provides a mechanism for emphasizing rare and potentially interesting sensory events. Previous studies have demonstrated that neurons in the auditory cortex and inferior colliculus show SSA. However, the contribution of the medial geniculate body (MGB) and its main subdivisions to SSA and detection of rare sounds remains poorly characterized. We recorded from single neurons in the MGB of anaesthetized rats while presenting a sequence composed of a rare tone presented in the context of a common tone (oddball sequences). We demonstrate that a significant percentage of neurons in MGB adapt in a stimulus-specific manner. Neurons in the medial and dorsal subdivisions showed the strongest SSA, linking this property to the non-lemniscal pathway. Some neurons in the non-lemniscal regions showed strong SSA even under extreme testing conditions (e.g., a frequency interval of 0.14 octaves combined with a stimulus onset asynchrony of 2000 ms). Some of these neurons were able to discriminate between two very close frequencies (frequency interval of 0.057 octaves), revealing evidence of hyperacuity in neurons at a subcortical level. Thus, SSA is expressed strongly in the rat auditory thalamus and contribute significantly to auditory change detection.  相似文献   

9.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

10.
Previous studies in the inferior colliculus have shown that spatial separation of signal and noise sources improves signal detection. In this study, we investigated the free-field unmasking response properties of single fibers in the auditory nerve--these were compared to those of inferior colliculus neurons under the same experimental conditions to test the hypothesis that central processing confers advantages for signal detection in the presence of spatially separated noise. For each neuron, we determined the detection threshold for a probe at the unit's best azimuth under three conditions: (1) by itself, (2) when a masker at a constant level was also presented at the unit's best azimuth, and (3) when the masker was positioned at different azimuths. We found that, on average, maskers presented at a unit's best azimuth elevated the probe detection threshold by 4.22 dB in the auditory nerve and 10.97 dB in the inferior colliculus. Angular separation of probe and masker sources systematically reduced the masking effect. The maximum masking release was on average 2.90 dB for auditory nerve fibers and 9.40 dB for inferior colliculus units. These results support the working hypothesis, suggesting that central processing contributes to the stronger free-field unmasking in the inferior colliculus.  相似文献   

11.
猫下丘中央核GABA能神经元年龄相关变化   总被引:1,自引:1,他引:0  
目的比较研究猫下丘中央核(CIC)GABA能神经元年龄相关变化,探索老年个体听力下降的神经机制。方法Nissl染色显示下丘神经元,免疫组织化学ABC法显示γ-氨基丁酸(GABA)免疫阳性神经元。光镜下观察、拍照,对神经元和GABA能神经元分别计数并换算成密度,测量GABA能神经元直径取平均值。结果GABA阳性反应神经元、阳性纤维及其终末在青年猫及老年猫下丘中央核均有分布。与青年猫相比,老年猫下丘中央核神经元及GABA能神经元密度均显著下降(P<0.01),GABA能神经元下降幅度较大;GABA能神经元胞体直径明显减小(P<0.01),阳性反应明显减弱。结论在衰老过程中猫下丘神经元尤其是GABA能神经元有显著丢失现象,提示GABA能神经元显著减少导致下丘兴奋性和抑制性神经递质之间的平衡失调,可能是引起老年个体听觉功能衰退的重要原因。  相似文献   

12.
A cytophotometric study of sections stained with gallocyanin and chrome alum showed that monaural stimulation for 2 h and binaural stimulation for 1.5 h with rhythmic noise signals led to a marked increase in the cytoplasmic RNA content per cell in the principal and large multipolar neurons of the dorsal and ventral parts of the ventrolateral region of the central nucleus of the inferior colliculus. The increase in cytoplasmic RNA content in the principal cells of the ipsiand contralateral parts of this nucleus relative to the stimulated ear in the case of monaural stimulation and the increase in RNA content in response to binaural stimulation suggests a uniform distribution of bilaterally converging connections from the lower nuclei of the auditory system on the principal cells. The increase in cytoplasmic RNA in the large multipolar cells of the contralateral central nucleus in response to monaural stimulation is evidence of the predominantly contralateral projection to these cells. The results are evidence of convergence of binaural influences on the principal and large multipolar cells of the central nucleus of the inferior colliculus.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 598–605, November–December, 1978.  相似文献   

13.
Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.Key words: salicylate, inferior colliculus, auditory cortex, activity-dependent cytoskeletal protein, early growth response gene-1  相似文献   

14.
脊椎动物听觉皮层下该团的功能性研究被揭示时尚很有限,(?)报导用神经生化的方法,研究了大白鼠中枢神经系统中,与听觉有关的下丘,桥脑比全脑MAO-B monoamme oxidase E C 1.23.4的活性,及在药物作用下的变化,以探讨单胺类神经递质在支因下听觉中枢作用的可能性,结果表明:1.与听觉有关的下丘,桥脑MAO-B活性明显高于全脑的平均水平.2.药物制首乌对下丘、桥脑及全脑的MAO-B活性均有显著的抑制作用,结果提示:下丘、桥脑MAO-B对单胺类神经递质的氧化脱氨作用高于全脑的平均水平,单胺类神经递质有可能作为皮层下听觉中枢的神经递质参与听觉的活动.  相似文献   

15.
The effect of unilateral and bilateral destruction of the inferior colliculus on the sensitivity of the auditory system, on parameters of the sonor signals, and on Doppler shift compensation in echo signals was studied in experiments on horseshoe bats (Rhinolophus ferrum-equinum). The results show that complete bilateral destruction of the inferior colliculus in bats does not lead to total disturbance of function of the auditory system but it sharply reduces the sensitivity of that system, as shown by a decrease in the maximal obstacle detection range and inability to respond to an insect emitting a feeble sound. It can also be concluded that the inferior colliculus plays a direct part in maintenance of the emission frequency and that different parts of the inferior colliculus play different roles in this process. The Doppler shift compensation effect requires preservation of the integrity of not less than half of the central nucleus of at least one inferior colliculus.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 375–381, July–August, 1980.  相似文献   

16.
The principal part of the supraoptic nucleus (SON) of the rat presents specific developmental factors. The parameters selected for their evaluation were volume of the SON, neuronal number and neuronal density. White Wistar rats of the age of 18, 19, 20, 22 and 23 intrauterine days, 15 days and 1, 3, 6, 12, 18 and 30 months were chosen for this study. The rat brains were fixed, cut into 10-micron-thick sections and stained with hematoxylin-eosin. The different measurements were carried out with a semiautomatic IBAS I image analyzer. In all stages of the rat life, an increase in volume and a decrease in neuronal density per surface unit could be observed, but there was a difference in the dynamics of these changes depending on the stage in which the parameters were determined. There were two periods in the life of the rat in which neuronal death was very significant. The first was between the embryonic and juvenile stage and the second between the adult and senile stage. The increase in the volume influences predominantly the value of neuronal density.  相似文献   

17.
This paper examines the distribution of fibers and cell bodies containing alpha-neo-endorphin in the cat brain stem by using an indirect immunoperoxidase technique. A high or moderate density of immunoreactive cell bodies was found in the superior central nucleus, nucleus incertus, dorsal tegmental nucleus, nucleus of the trapezoid body, and in the laminar spinal trigeminal nucleus, whereas a low density of such perikarya was observed in the inferior colliculus, nucleus praepositus hypoglossi, dorsal nucleus of the raphe, nucleus of the brachium of the inferior colliculus, and in the nucleus of the solitary tract. The highest density of immunoreactive fibers was found in the substantia nigra, dorsal motor nucleus of the vagus, nucleus coeruleus, lateral tegmental field, marginal nucleus of the brachium conjunctivum, and in the inferior and medial vestibular nuclei. These results indicate that alpha-neo-endorphin is widely distributed in the cat brain stem and suggest that the peptide could play an important role in several physiological functions, e.g., those involved in respiratory, cardiovascular, auditory, and motor mechanisms.  相似文献   

18.
Thiamine deficiency results in selective neuronal cell death in thalamic structures. Previous studies provide evidence for a role implicating nitric oxide (NO) in the pathogenesis of cell death due to thiamine deficiency. In order to ascertain the origin of increased NO in the thiamine deficient brain, expression of endothelial nitric oxide synthase isoform (eNOS), was measured in the medial thalamus and in the inferior colliculus and compared to the frontal cortex (a spared region) of rats in which thiamine deficiency was induced through a feeding protocol of thiamine-deficient diet concomitant with daily administration of pyrithiamine, a central thiamine antagonist. eNOS mRNA and protein expression were significantly increased as a function of the severity of neurological impairment and the degree of neuronal cell loss in the medial thalamus and in the inferior colliculus. These findings suggest that the vascular endothelium is a major site of NO production in the brain in thiamine deficiency and that eNOS-derived NO could account for the selective damage to the thalamic structures that are observed in this particular disorder.  相似文献   

19.
Arce  M. E.  Sánchez  S. I.  Correa  M. M.  Ciuffo  G. M. 《Neurochemical research》2019,44(2):412-420

We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III–tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.

  相似文献   

20.
In the mustached bat, the central auditory system contains FM–FM (delay-tuned) neurons which are specialized for processing target-distance information carried by echo delays. Mechanisms for creating the FM–FM neurons involve delay lines, coincidence detection and amplification. A neural basis for delay lines can be a map representing response latencies. The aim of the present study is to explore whether the central nucleus of the inferior colliculus has a latency axis incorporated into iso-best frequency slabs. Responses of single or multiple neurons were recorded from the inferior colliculus of unanesthetized mustached bats with tungsten-wire electrodes, and their response latencies were measured with tone bursts at their best frequencies and best amplitudes or 65 dB SPL. In the dorsoventral electrode penetrations across the inferior colliculus, response latency systematically shortens from ˜12 to ˜4␣ms. Tonotopic representation in the inferior colliculus is somewhat complex. Iso-best frequency slabs are tilted and/or curved, but they orient more or less ventrodorsally. Nevertheless, the latency axis is evident in each iso-best frequency slab, regardless of best frequency. The inferior colliculus has the frequency-vs-latency coordinates. Accepted: 2 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号