首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floral development in Piper was compared between four-staminate species (P. aduncum and P. marginatum) and six-staminate species (P. amalago). All Piper species have a syncarpous gynoecium composed of three or four carpels. The floral apex is initiated by a periclinal division in the subsurface layer in the axil of a bract 40-55 μm high; initiation of the bracts occurs separately and considerably earlier. The floral primordium widens and the first pair of stamens are initiated at either side. The median anterior stamen forms next, and the median posterior later. This sequence is common to all species studied. In the six-staminate P. amalago, the last two stamens form simultaneously in lateral-anterior positions. The stamens hence arise as pairs, and symmetry is bilateral or dorsiventral. The three or four carpels arise simultaneously; they are soon elevated on a gynoecial ring by growth of the receptacle below the level of attachment of the carpels to produce a syncarpous gynoecium. The floral apex lastly produces the solitary basal ovule and is used up in its formation.  相似文献   

2.
The inflorescence of Dracontium polyphyllum consists of 150 – 300 flowers arranged in recognisable spirals. The flower has 5 – 6 (90% of observed specimens), or 7 broad tepals enclosing 9 – 12 stamens (occasionally 7) inserted in two whorls. The gynoecium is trilocular (90% of observed specimens) or tetralocular. The tetralocular gynoecia are found at random among the trilocular gynoecia. Each locule encloses an ovule inserted in an axile position, in the median portion of the ovary. Each carpel has its own stylar canal. However, in the upper portion of the style, there is only one common stylar canal. Floral organs are initiated in an acropetal direction in the following sequence: tepals, stamens, and carpels. During later stages of development, the tepals progressively cover the other floral organs. The first floral primordia are initiated on the upper portion of the inflorescence. During early stages of development, the floral primordia have a circular shape. The tepals are initiated nearly simultaneously. During later stages of development, the first whorl of stamens develops in alternation with the tepals and is followed by a second whorl of stamens. The trilocular or tetralocular nature of the ovary is clearly visible during early stages of development of the gynoecium. Recent molecular studies show that Anaphyllopsis A. Hay and Dracontium L. are closely related. However, although pentamerous flowers have been observed in Anaphyllopsis, the developmental morphology of the flower of Dracontium is different from that of Anaphyllopsis.  相似文献   

3.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

4.
Most angiosperms have gynoecia with two to five carpels. However, more than five carpels (here termed ‘multicarpellate condition’) are present in some representatives of all larger subclades of angiosperms. In such multicarpellate gynoecia, the carpels are in either one or more than one whorl (or series). I focus especially on gynoecia in which the carpels are in a single whorl (or series). In such multicarpellate syncarpous gynoecia, the closure in the centre of the gynoecium is imprecise as a result of slightly irregular development of the carpel flanks. Irregular bumps appear to stuff the remaining holes. In multicarpellate gynoecia, the centre of the remaining floral apex is not involved in carpel morphogenesis, so that this unspent part of the floral apex remains morphologically undifferentiated. It usually becomes enclosed within the gynoecium, but, in some cases, remains exposed and may or may not form simple excrescences. The area within the remaining floral apex is histologically characterized by a parenchyma of simple longitudinal cell rows. In highly multicarpellate gynoecia with the carpels in a whorl, the whorl tends to be deformed into an H‐shaped or star‐shaped structure by differential growth of the floral sectors, so that carpels become aligned in parallel rows, in which they face each other with the ventral sides. In this way, a fractionated compitum may still be functional. Multicarpellate gynoecia (with the carpels in one whorl or series) occur in at least one species in 37 of the 63 angiosperm orders. In contrast, non‐multicarpellate gynoecia are present in at least one species of all 63 orders. The basal condition in angiosperms is more likely non‐multicarpellate. Multicarpellate gynoecia are restricted to flowers that are not highly synorganized. In groups with synorganized androecium and gynoecium and in groups with elaborate monosymmetric flowers, multicarpellate gynoecia are lacking. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 1–43.  相似文献   

5.
The initiation and development of the floral organs of Brassica napus L. (cv. Westar) were examined using the scanning electron microscope. After transition of the vegetative apex into an inflorescence apex, flower primordia were initiated in a helical phyllotactic pattern. The sequence of initiation of the floral organs in a flower bud was that of sepals, stamens, petals and gynoecium. Of the four sepal primordia, the abaxial was initiated first, followed by the two lateral and finally the adaxial primordium. The four long stamens were initiated simultaneously in positions alternating with the sepals. The two short stamens were initiated basipetal to and outside the long stamens, and opposite the lateral sepals. The petals arose on either side of the two short stamens and the gynoecium was produced from the remainder of the apex. During development, the sepal primordia curved sharply at the tips and tightly enclosed the other organs. Stamen primordia developed tetralobed anthers at an early stage while filament elongation occurred just prior to anthesis. A unique pattern of bulbous cells was present on the abaxial surface of the anther. Growth of petal primordia lagged relative to the other floral organs but expansion was rapid prior to anthesis. The gynoecium primordium was characterized by an invagination early in development. At maturity, there was differentiation of a papillate stigma, an elongated style and a long ovary marked externally by sutures and divided internally by a septum. Distinct patterns of cuticular thickenings were observed on the abaxial and adaxial surfaces of the petals and stamens and on the surface of the style. The patterns were less obvious on the sepals and ovary. Stomata were present on both surfaces of the mature sepals, on the style and restricted areas on the abaxial surface of the anthers and nectaries but were absent from the petals, the adaxial surface of the stamens and the ovary. No hairs were present on any of the floral organs.  相似文献   

6.
The life cycle of Podophyllum can be divided into two phases, a subterranean phase during which a conspicuous winter mixed terminal bud forms at the end of a rhizome, and an aerial phase, during which the primordia of the structures within the winter bud give rise the next spring to an aerial shoot composed of a stem, 2 leaves, and a single flower. The transition from a vegetative to a floral apex occurs at the end of July, when the apical meristem becomes a globoid structure. During the first and second weeks of August, the floral organs are laid down along the sides of an elongated floral apex. The order of initiation of the floral organs is sepals, petals, stamens, gynoecium, and stamens. Petal primordia are initiated in early August, but growth ceases after they attain a height of about 2 mm. This inhibition persists until the middle of May in the next growing season, when the petals grow to 12 mm within 2 weeks. At anthesis the petals have enlarged to a length of 2 cm or more. The gynoecium is usually composed of a single terminal carpel. The ovules are chiefly supplied by branches from a ventral bundle complex, but that is supplemented by medullary bundles that are formed in the base of the gynoecium, below the loculus. It could be argued that these medullary bundles are surviving remnants of the vascular supply to a second carpel, no longer extant. A transmitting tract extends from the stigma about half the distance to the loculus. The tract is lined with unicellular glandular cells and is open from the stigma to the loculus.  相似文献   

7.
Zippelia begoniaefolia Bl., a monotypic species having characteristics of both Piperaceae and Saururaceae, has racemes of about 20 small flowers lacking a perianth, each with six free stamens and a four-carpellate syncarpous gynoecium. The inflorescence apical meristem initiates bracts acropetally and helically, each of which subtends a later initiated single floral apex; there are no “common” primordia. The six stamens are initiated as two lateral pairs and two solitary successive primordia, the latter two opposite in median sagittal positions. Four carpel primordia are initiated as a lateral pair and two successively initiated in the median sagittal plane. This order of organ inception is unique among Piperaceae and Saururaceae. Intercalary growth below carpellary attachment raises them up on a common cylindrical base that becomes the syncarpous ovary, covered with unique glochidiate hairs and containing a single basal ovule. The free portions of the carpels become the reflexed papillate stigmas. The floral vascular system has a single bundle at base that branches to supply the bract and flower traces. The floral vasculature is similar but not identical to that of Saururus (Saururaceae) and some Piper species (Piperaceae). Plesiomorphic character states of Zippelia that are shared with Saururus include hypogyny, free stamens, cleft stigma, and a similar floral groundplan. Synapomorphies, derived shared character states that unite Zippelia with Piperaceae, include syncarpy, solitary ovule, basal placentation, fused ventral carpellary bundles, and a double vascular cylinder in the stem. Cladistic analysis aligns Zippelia with Piperaceae because they share apomorphies, and because Zippelia shares only plesiomorphies with Saururus.  相似文献   

8.
When mutations in CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 are combined, severe defects involving fusion of sepals and of stamens occur in Arabidopsis flowers. In addition, septa of gynoecia do not fuse along the length of the ovaries and many ovules have their growth arrested. CUC2 is expressed at the tips of septal primordia during gynoecium development and at the boundary between nucellus and chalaza during ovule development. These expression patterns are partially consistent with the phenotype of the mutant gynoecium. CUC2 mRNA is also shown to be expressed at the boundaries between meristems and organ primordia during both the vegetative and reproductive phases. This expression pattern indicates that CUC2 is generally involved in organ separation in shoot and floral meristems.  相似文献   

9.
The floral ontogeny of two species of Knema and one of Horsfieldia was examined and described using scanning electron microscopy. The perianth is trimerous with three tepals arising in succession. Pistillate flowers have a rounded floral apex with a convex top. The single carpel primordium is initiated along the margin of the bud and develops a plicate shape with an apical bilobed stigma. In staminate flowers, the floral apex is broadly hemispherical with a somewhat three‐sided shape. Several anther primordia are initiated almost simultaneously around the margin of the floral apex. In Horsfieldia, stamens extend laterally in antetepalous groups, whereas, in Knema, anthers form two whorls. The alternitepalous stamens were found to be different from the antetepalous stamens, which are pressed within a limited space. The anther primordia remain adnate to the receptacle and grow longitudinally, producing a pair of microsporangia. The central area of the floral apex persists as an undifferentiated residuum without any trace of a gynoecium. Myristicaceous anthers are basically homologous, although the number of anthers, pollen sacs and shape of the androecium are variable. The evolution of the androecium is discussed in the family, with opposing possibilities for reductions and increases in anther number in Myristicaceae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 42–52.  相似文献   

10.
为进一步研究商陆科的系统位置提供花器官发生和发育的证据,在扫描电子显微镜下观察了商陆Phytolacca acinosa、多雄蕊商陆P. polyandra和垂序商陆P. americana的花器官发生.结果表明: 商陆属植物花被的发生均为2/5型螺旋发生.在同一个种不同的花蕾中,花被的发生有两种顺序:逆时针方向和顺时针方向.远轴侧非正中位的1枚先发生.雄蕊发生于环状分生组织.在单轮雄蕊的种中8-10枚雄蕊为近同时发生;两轮雄蕊的种8枚内轮雄蕊先发生,6-8枚外轮雄蕊随后发生,内轮雄蕊为同时发生,外轮雄蕊发生次序不规则.心皮原基也发生于环状分生组织,8-10枚心皮原基为同时发生.在后来的发育过程中,商陆的心皮发育成近离生心皮雌蕊;其他2种心皮侧壁联合发育成合生心皮雌蕊.对商陆属植物花器官发生的类型及发育形态学做了分析,结果支持商陆科在石竹目系统发育中处于原始地位的观点.  相似文献   

11.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

12.
Flowers of Potamogeton normally have a completely tetramerous plan. Deviations from this norm occur quite commonly in the uppermost flowers of the inflorescence; these variations have been reported before and usually involve a reduction in number of parts. Cases have now been found where the gynoecium of all or many flowers differs from the normal tetracarpellate arrangement; some species regularly have fewer and others more than four carpels. The developmental bases of meristic variation have been explored and quantitative studies of gynoecia and developing gynoecia have been undertaken. The data are used to evaluate the control and correlation of floral development in Potamogeton in general, and in particular the relationship between the gynoecium and the rest of the flower. The developing flower passes through two successive phases of organ initiation: one in which the perianth and stamen primordia arise, and one in which the gynoecial primordia arise. There seems to be little developmental relationship between the two phases except phyllotactic continuity. During the perianth/stamen phase each stamen primordium arises directly above a perianth member, and the presence of a perianth member seems to be a prerequisite for initiation of the stamen. The perianth/stamen phase seems to be rather stable so that normally four perianth/stamen associations are initiated, except in flowers at the tip of the inflorescence. In the gynoecial phase the number of carpel primordia initiated seems to depend on the relative size of carpel primordia and floral apex, and on whether or not the floral apex continues to grow while initiating carpel primordia.  相似文献   

13.
The development of the bisexual flower of Lophotocarpus calycinus and of the unisexual flowers of Sagittaria latifolia has been observed. In all eases floral organs arise in acropetal succession. In L. calycinus, after initiation of the perianth, the first whorl of stamens to form consists of six stamens and is ordinarily followed by two alternating whorls of six stamens each. The very numerous carpels arc initiated spirally. In the male flower of S. latifolia the androecium develops in spiral order. A few rudimentary carpels appear near the floral apex after initiation of the stamens. There are no staminodia. The female flower has a similar developmental pattern to that of Lophotocarpus except that a prominent residual floral apex is left bare of carpels. The vascular system in all flowers is semiopen, with vascular bundles passing to the floral organs in a pattern unrelated to the relative positions of those organs. The androecia of these two taxa are similar to those of some Butomaceae and relationships based on ontogeny and morphology are suggested. The gynoecia are meristically less specialized but morphologically more specialized than the gynoecia of Butomaceae.  相似文献   

14.
马桑绣球(绣球科)的花器官发生和发育   总被引:3,自引:0,他引:3  
在扫描电镜下观察了马桑绣球Hydrangea aspera孕性花的发生及发育过程。马桑绣球的花器官向心轮状发生:花萼原基以2/5螺旋式相继发生,花瓣原基几乎同步发生。花瓣开始发育时,与花萼相对的雄蕊发生。与花瓣相对的雄蕊原基与心皮原基几乎同时出现。初始心皮向上扩展,分化出花柱和柱头,向下延伸,嵌入花托,发育为下位子房。花发育成熟时,隔膜于子房的下部连续,而中部和上部不连续,即子房为不完全2室。经过与绣球属已观察过的另外5种1亚种花器官发生和发育比较,发现马桑绣球与藤绣球H. ano mala subs  相似文献   

15.
The floral development of Phyllanthus chekiangensis has been studied by scanning electron microscopy. The perianth organs are initiated in two whorls, dimerous in male flowers and trimerous in female flowers, with a longer plastochron between whorls than between the organs within a whorl. Male flowers have two stamens. The prominent connective protrusions begin development simultaneously with the floral disk. The disk is two-lobed in male flowers but continuous in female flowers. In female flowers, the developing gynoecium remains open relatively long, so the developing ovules are visible from the outside for some time. The direction of the hemitropous ovules in the carpels is antitropous (epitropous). Two small obturators are formed per carpel, one above each ovule. The prominent nucellar beak extends far beyond the “micropyle”. A micropyle in the classical sense formed by integuments closing over the nucellus apex is not present at any stage of development. Thus, it is not correct to say that the nucellar beak “grows through the micropyle”. The exposed nucellar beak continues the curvature of the antitropous (epitropous) ovule and becomes contiguous with the obturator. The unusual length of the nucellar beak may be a potential synapomorphy of the enlarged Phyllanthus clade as inferred from molecular phylogenetics.  相似文献   

16.
Polymerous gynoecia are normally found in some members of Fabaceae, although the vast majority of this family is characterized by a gynoecium consisting of a single carpel. Summarizing the variation of gynoecium features in these species together with analysis of floral structure and ontogeny in mutants of pea (Pisum sativum L.) suggests to propose two different ways of gynoecium polymerization in legumes. The first is homeotic replacement of the stamens into carpels observed in stp mutants of pea and possibly causing the multicarpellate habit in mimosoids. The second deals with flower fusion within an inflorescence, a transformation observed in fasciated forms of pea together with the mutants coch and det. Similar processes might contribute to formation of the bicarpellate flowers of some swartzioid legumes. The polymerous gynoecium evolved in Fabaceae at least twice independently.  相似文献   

17.
The inflorescence apex is stratified and has a single layered tunica, bracts as well as all the floral organs develop acropetally. Except for stamens which are initiated with the activity of deeper layers of apex, all other floral appendages are initiated with the activity of second layer. On the basis of ontogenetic studies the floral organs have been homologised with the leaves. The adjacent calyx lobes develop and remain closely appressed and do not show post-genital fusion. Corolla tube is formed due to zonal growth preceeded by joint growth of hump on the abaxial face of stamen primordia and interprimordial region between petal primordia. Thus no post-genital fusion was observed. The placentae develop concomitantly with carpellary wall.  相似文献   

18.
The degree of sexual dimorphism in flowers and inflorescences can be evaluated early in flower development through the study of floral organ size co-variation. In the present work, the gynoecium-androecium size relationship was studied to assess the degree of sexual expression in flowers and inflorescences of the andromonoecious shrub Caesalpinia gilliesii. The co-variation pattern of floral organ sizes was compared between small and large inflorescences, under the hypothesis that inflorescence size reflected differential resource availability. Also, staminate and perfect flowers were collected from three populations and compared on the basis of gynoecium, ovule length, filament length, pollen size and number. The obtained results indicated that staminate and perfect flowers differed only in the gynoecium and ovule length, whereas filament length, pollen size, and number varied across populations. The gynoecium size was smaller and its variability was much higher in staminate than in perfect flowers, as explained by a recent hypothesis about pollinator-mediated gynoecium size selection acting upon perfect flowers. The analysis of the gynoecium-androecium size relationship during flower development, revealed a dissociation of gynoecium growth relative to other floral structures in some buds. Lower gynoecium-androecium regression slopes and smaller gynoecia length characterized smaller inflorescences, thus reflecting the fact that sexual expression was more male-biased. This trend is in agreement with a differential resource-related response at the inflorescence level, however, post-mating resource allocation and the inclusion of other modular levels may also help us to understand the variation in sexual dimorphism in this species.  相似文献   

19.
As a first step towards a broader floral ontogenetic study on Cornales, the flowers of four species of Hydrangeaceae (Deutzia corymbosa, Kirengeshoma palmata, Philadelphus purpurascens and Hydrangea petiolaris) were studied. In Deutzia and Kirengeshoma five sepal primordia are generally initiated, in Philadelphus only four. Sepal initiation in Kirengeshoma shows a tendency to tetramony. Deutzia has a variable sepal initiation. Petal growth was never retarded in the studied species. Initiation of the androecium in Kirengeshoma, Philadelphus and Hydrangea starts with antesepalous primary primordia, on which secondary primordia are soon formed, leading ultimately to the formation of polystaminate androecia. In Deutzia a diplostemonous androecium is formed, starting with the initiation of the antesepalous stamen primordia. Gynoecium development is similar in all species studied: on a concave floral apex, a ring meristem is initiated; it develops into a variable number of continuous carpel primordia, while the centripetally growing common margins form the septa. Initiation of the ovule primordia starts halfway up each placenta and extends in an apical, basal and lateral direction. A number of morphological problems are discussed, such as the derivation of tetramery, and evolutionary and developmental trends in the androecium and gynoecium. Kirengeshoma is well settled in Hydrangeaceae, although its exact position within the family remains uncertain. A sistergroup relationship of Hydrangeaceae with Loasaceae is supported. However, Hydrangeaceae also share features with Saxifragaceae (e.g. similar gynoecium development).  相似文献   

20.
Transition to flowering in the North-temperate bog plant Scheuchzeria palustris occurs in early May and results in the formation of a simple raceme with six flowers. Five of the flowers are subtended by large foliar bracts, while the sixth and last-formed flower on the inflorescence remains ebracteate. The individual flowers develop along a clearly trimerous pattern. The three outer tepals develop first, arising almost simultaneously at the periphery of the triangular floral apex. They are followed closely by the development of the three anti-tepalous outer stamens. The three inner tepals are next in the developmental sequence, alternating with the outer whorl of tepal-stamen pairs but arising at a slightly higher level on the floral meristem. Three inner stamens are initiated opposite the inner tepal primordia. Finally, three gynoecial primordia are initiated on the remaining central portion of the floral apex and alternating with the inner whorl of tepal-stamen pairs. Each carpel develops at first as a horseshoe-shaped structure. Two ovules form in each carpel, initiating on the adaxial margin of the carpel wall. Histogenesis of all floral appendages involves initially periclinal divisions in the second tunica layer followed by corresponding anticlinal divisions in the first tunica layer and concurrent activity in the underlying corpus. Separate procambial strands differentiate acropetally from the inflorescence axis to each tepal-stamen pair and then bifurcate. The vascular connection to the gynoecium develops directly from the strands in the tepal-stamen pairs. The results of this developmental study of the flower of S. palustris have a significant bearing on the positioning of this and related taxa within the Alismatidae and on the speculation of the phylogeny of the monocotyledon flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号