首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P J Tonge  P R Carey 《Biochemistry》1990,29(48):10723-10727
Resonance Raman (RR) spectroscopy has been used to obtain the vibrational spectrum of the acyl carbonyl group in a series of acylchymotrypsins and acylsubtilisins at the pH of optimum hydrolysis. The acyl-enzymes, which utilize arylacryloyl acyl groups, include three oxyanion hole mutants of subtilisin BPN', Asn155Leu, Asn155Gln, and Asn155Arg, and encompass a 500-fold range of deacylation rate constants. For each acyl-enzyme a RR carbonyl band has been identified which arises from a population of carbonyl groups undergoing nucleophilic attack in the active site. As the deacylation rate (k3) increases through the series of acyl-enzymes, the carbonyl stretching band (vC = O) is observed to shift to lower frequency, indicating an increase in single bond character of the reactive acyl carbonyl group. Experiments involving the oxyanion hole mutants of subtilisin BPN' indicate that a shift of vC = O to lower frequency results from stronger hydrogen bonding of the acyl carbonyl group in the oxyanion hole. A plot of log k3 against vC = O is linear over the range investigated, demonstrating that the changes in vC = O correlate with the free energy of activation for the deacylation reaction. By use of an empirical correlation between carbonyl frequency (vC = O) and carbonyl bond length (rC = O) it is estimated that rC = O increases by 0.015 A as the deacylation rate increases 500-fold through the series of acyl-enzymes. This change in rC = O is about 7% of that expected for going from a formal C = O double bond in the acyl-enzyme to a formal C-O single bond in the tetrahedral intermediate for deacylation. The data also allow us to estimate the energy needed to extend the acyl carbonyl group along its axis to be 950 kJ mol-1 A-1.  相似文献   

2.
P J Tonge  P R Carey 《Biochemistry》1989,28(16):6701-6709
By use of resonance Raman (RR) spectroscopy, the population of the reactive carbonyl group in active acylchymotrypsins has been characterized and correlated with acyl-enzyme reactivity. RR spectra have been obtained, with a flow system and 324- and 337.5-nm excitation, at low and active pH for six acylchymotrypsins, viz., (indoleacryloyl)-, (4-amino-3-nitrocinnamoyl)-, (furylacryloyl)-, [( 5-ethylfuryl)-acryloyl]-, (thienylacryloyl)-, and [( 5-methylthienyl)acryloyl]chymotrypsin. These acyl-enzymes represent a 100-fold range of deacylation rate constants. Good RR spectral quality has enabled us to obtain the vibrational spectrum of the carbonyl group at low and active pH in each acyl-enzyme. The measured pKa of the spectroscopic changes in the carbonyl region is identical with that for the deacylation kinetics, showing that the RR carbonyl features reflect the ionization state of His-57. A carbonyl population has been observed in the active acyl-enzymes in which the carbonyl oxygen atom of the reactive acyl linkage is hydrogen-bonded in the active site. The proportion of this hydrogen-bonded population, with respect to other observed non-hydrogen-bonded species, together with the degree of polarization of the carbonyl bond, as monitored by vC = 0, has been correlated with the deacylation rate constants of the acyl-enzymes. It is proposed that the hydrogen-bonded carbonyl species is located at or near the oxyanion hole and represents the ground state from which deacylation occurs. An increase in the proportion of the hydrogen-bonded population and an increase in polarization of the carbonyl bond result in an increase in deacylation rate constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Infrared difference spectra show that at least 4 conformations coexist for the ester carbonyl group of the stable acyl-enzyme species formed between the antibiotic aztreonam and the class C beta-lactamase from Citrobacter freundii. A novel method for the assignment of the bands that arise from the ester carbonyl group has been employed. This has made use of the finding that the infrared absorption intensity of aliphatic esters is surprisingly constant, so a direct comparison with simple model esters has been possible. This has allowed a clear distinction to be made between ester and amide (protein) absorptions. The polarity of the conformer environment varies from hexane-like to strongly hydrogen-bonded. We assume that the conformer with the lowest frequency (1,690 cm(-)(1)) and hence the strongest hydrogen-bonding is the singular conformer observed in the X-ray crystallographic structure, since a good interaction via two hydrogen bonds with the oxyanion hole is seen. Molecular dynamics simulation by the method of locally enhanced sampling revealed that the motion of the ester carbonyl of the acyl-enzyme species in and out of the oxyanion hole is facile. The simulation revealed two pathways for this motion that would go through intermediates that first break one or the other of the two hydrogen bonds to the oxyanion hole, prior to departure of the carbonyl moiety out of the active site. It is likely that such motion for the acyl-enzyme species might also occur with more typical beta-lactam substrates for beta-lactamases, but their detection in the more rapid time scale may prove a challenge.  相似文献   

4.
The acyl carbonyl group of [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin (5MeTA-chymotrypsin) has been investigated by using both resonance Raman (RR) and Fourier transform infrared (FTIR) spectroscopies. The spectrum of the acyl-enzyme carbonyl group has been obtained as a function of pH over the range 3.0-10.0 in the RR experiments and over the range 3.4-7.6 (p2H) in the FTIR experiments. The carbonyl spectral profiles obtained by using FTIR spectroscopy are substantially different from the carbonyl profiles obtained by using RR spectroscopy. The FTIR spectra were obtained by subtracting the spectrum of the free enzyme from that of the acyl-enzyme. Use of the active-site inhibitor phenylmethanesulfonyl fluoride demonstrates that part of the intensity observed in the FTIR spectra of 5MeTA-chymotrypsin is due to a subtraction artifact giving rise to enzyme-associated bands, probably from peptide groups perturbed by substrate binding. The enzyme bands can be removed by subtracting the FTIR spectrum of 13C=O acyl-enzyme from that of 12C=O acyl-enzyme. Additionally, this procedure reveals that one of the acyl-enzyme carbonyl bands observed at 1727 cm-1 using RR spectroscopy is absent in the FTIR acyl-enzyme spectrum. However, a feature near 1720 cm-1 can be induced in the FTIR spectrum by actinic light in the near-UV region. Thus, it is proposed that the 1727 cm-1 RR carbonyl band results from a population of acyl-enzymes which is generated by exposure to the laser beam during RR data collection. When both the RR and FTIR data are adjusted to remove artifacts, they provide essentially identical carbonyl stretching profiles.  相似文献   

5.
I.r. difference spectra are presented for 3-(indol-3-yl)acryloyl-, cinnamoyl-, 3-(5-methylthien-2-yl)acryloyl-, dehydrocinnamoyl- and dihydrocinnamoyl-chymotrypsins at low pH, where the acyl-enzymes are catalytically inactive. At least two absorption bands are seen in each case in the ester carbonyl stretching region of the spectrum. Cinnamoyl-chymotrypsin substituted at the carbonyl carbon atom with 13C was prepared. A difference spectrum in which 13C-substituted acyl-enzyme was subtracted from [12C]acyl-enzyme shows two bands in the ester carbonyl region and thus confirms the assignment of the features to the single ester carbonyl group. The frequencies of the ester carbonyl bands are interpreted in terms of differential hydrogen-bonding. In each case a lower-frequency relatively narrow band is assigned to a productive potentially reactive binding mode in which the carbonyl oxygen atom is inserted in the oxyanion hole of the enzyme active centre. The higher-frequency band, which is broader, is assigned to a non-productive binding mode in each case, where a water molecule bridges from the carbonyl oxygen atom to His-57; this mode is equivalent to the crystallographically determined structure of 3-(indol-3-yl)acryloyl-chymotrypsin, i.e. the Henderson structure. A difference spectrum of dihydrocinnamoyl-chymotrypsin taken at higher pH shows resolution of a feature centred upon 1731 cm-1, which is assigned to a non-bonded conformer in which the carbonyl oxygen atom is not hydrogen-bonded. Perturbation of the protein spectrum in the presence of acyl groups is interpreted in terms of enhanced structural rigidity. It is reported that the ester carbonyl region of the difference spectrum of cinnamoyl-subtilisin is complicated by overlap of features that arise from protein perturbation. Measurements of carbonyl absorption frequencies in a number of solvents of the methyl esters of the acyl groups used to make acyl-enzymes have permitted determination of the apparent dielectric constants experienced by carbonyl groups in the enzyme active centre as well as a discussion of the effects of polarity. The ester carbonyl bond strengths of the various conformations were estimated by using simple harmonic oscillator theory and an empirical relation between the force constants and bond strengths. The fractional bond breaking induced by hydrogen-bonding was used to calculate rate enhancement factors by using absolute reaction rate theory.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor A3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 A structure reveals an invariant arginine bound to an acetate that mimics the malonyl carboxylate and helps define the extender unit binding site. Catalysis may only occur when the oxyanion hole is formed through substrate binding, preventing hydrolysis of the acyl-enzyme intermediate. Macromolecular docking simulations with actinorhodin ACP suggest that the majority of the ACP docking surface is formed by a helical flap. These results should help to engineer polyketide synthases (PKSs) that produce novel polyketides.  相似文献   

7.
We report here the x-ray crystal structure of a soluble catalytically active fragment of the Escherichia coli type I signal peptidase (SPase-(Delta2-75)) in the absence of inhibitor or substrate (apoenzyme). The structure was solved by molecular replacement and refined to 2.4 A resolution in a different space group (P4(1)2(1)2) from that of the previously published acyl-enzyme inhibitor-bound structure (P2(1)2(1)2) (Paetzel, M., Dalbey, R.E., and Strynadka, N.C.J. (1998) Nature 396, 186-190). A comparison with the acyl-enzyme structure shows significant side-chain and main-chain differences in the binding site and active site regions, which result in a smaller S1 binding pocket in the apoenzyme. The apoenzyme structure is consistent with SPase utilizing an unusual oxyanion hole containing one side-chain hydroxyl hydrogen (Ser-88 OgammaH) and one main-chain amide hydrogen (Ser-90 NH). Analysis of the apoenzyme active site reveals a potential deacylating water that was displaced by the inhibitor. It has been proposed that SPase utilizes a Ser-Lys dyad mechanism in the cleavage reaction. A similar mechanism has been proposed for the LexA family of proteases. A structural comparison of SPase and members of the LexA family of proteases reveals a difference in the side-chain orientation for the general base lysine, both of which are stabilized by an adjacent hydroxyl group. To gain insight into how signal peptidase recognizes its substrates, we have modeled a signal peptide into the binding site of SPase. The model is built based on the recently solved crystal structure of the analogous enzyme LexA (Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., and Strynadka, N. C. J. (2001) Cell 106, 1-10) with its bound cleavage site region.  相似文献   

8.
Despite the availability of many experimental data and some modeling studies, questions remain as to the precise mechanism of the serine proteases. Here we report molecular dynamics simulations on the acyl-enzyme complex and the tetrahedral intermediate during the deacylation step in elastase catalyzed hydrolysis of a simple peptide. The models are based on recent crystallographic data for an acyl-enzyme intermediate at pH 5 and a time-resolved study on the deacylation step. Simulations were carried out on the acyl enzyme complex with His-57 in protonated (as for the pH 5 crystallographic work) and deprotonated forms. In both cases, a water molecule that could provide the nucleophilic hydroxide ion to attack the ester carbonyl was located between the imidazole ring of His-57 and the carbonyl carbon, close to the hydrolytic position assigned in the crystal structure. In the "neutral pH" simulations of the acyl-enzyme complex, the hydrolytic water oxygen was hydrogen bonded to the imidazole ring and the side chain of Arg-61. Alternative stable locations for water in the active site were also observed. Movement of the His-57 side-chain from that observed in the crystal structure allowed more solvent waters to enter the active site, suggesting that an alternative hydrolytic process directly involving two water molecules may be possible. At the acyl-enzyme stage, the ester carbonyl was found to flip easily in and out of the oxyanion hole. In contrast, simulations on the tetrahedral intermediate showed no significant movement of His-57 and the ester carbonyl was constantly located in the oxyanion hole. A comparison between the simulated tetrahedral intermediate and a time-resolved crystallographic structure assigned as predominantly reflecting the tetrahedral intermediate suggests that the experimental structure may not precisely represent an optimal arrangement for catalysis in solution. Movement of loop residues 216-223 and P3 residue, seen both in the tetrahedral simulation and the experimental analysis, could be related to product release. Furthermore, an analysis of the geometric data obtained from the simulations and the pH 5 crystal structure of the acyl-enzyme suggests that since His-57 is protonated, in some aspects, this crystal structure resembles the tetrahedral intermediate.  相似文献   

9.
The objective of this study was to determine the molecular factors that lead to beta-lactamase inhibitor resistance for the M69V variant in SHV-1 beta-lactamase. With mechanism-based inhibitors, the beta-lactamase forms an acyl-enzyme intermediate that consists of a trans-enamine derivative in the active site. This study focuses on these intermediates by introducing the E166A mutation that greatly retards deacylation. Thus, by comparing the properties of the E166A and M69V/E166A forms, we can explore the consequences of the resistance mutation at the level of the enamine acyl-enzyme forms. The reactions between the beta-lactamase and the inhibitors tazobactam, sulbactam, and clavulanic acid are followed in single crystals of the enzymes by using a Raman microscope. The resulting Raman difference spectroscopic data provide detailed information about conformational events involving the enamine species as well as an estimate of their populations. The Raman difference spectra for each of the inhibitors in the E166A and M69V/E166A variants are very similar. In particular, detailed analysis of the main enamine Raman vibration near 1595 cm(-1) reveals that the structure and flexibility of the enamine fragments are essentially identical for each of the three inhibitors in E166A and in the M69V/E166A double mutant. This finding is in accord with the X-ray-derived structures, presented herein at 1.6-1.75 A resolution, of the trans-enamine intermediates formed by the three inhibitors in M69V/E166A. However, a comparison of Raman results for M69V/E166A and E166A shows that the M69V mutation results in a 40%, 25%, and negligible reductions in the enamine population when the beta-lactamase crystals are soaked in 5 mM tazobactam, clavulanic acid, and sulbactam solutions, respectively. The levels of enamine from tazobactam and clavulanic acid can be increased by increasing the concentrations of inhibitor in the mother liquor. Thus, the sensitivity of population levels to the inhibitor concentration in the mother liquor focuses attention on the properties of the encounter complex preceding acylation. It is proposed that for small ligands, such as tazobactam, sulbactam, and clavulanic acid, the positioning of the lactam ring in the active site in the correct orientation for acylation is only one of a number of poorly defined conformations. For tazobactam and clavulanic acid, the correctly oriented encounter complex is even less likely in the M69V variant, leading to a reduction in the level of inhibition of the enzyme via formation of the acyl-enzyme intermediate and the onset of resistance. Analysis of the X-ray structures of the three intermediates in M69V/E166A demonstrates that, compared to the structures for the E166A form, the oxyanion hole becomes smaller, providing one explanation for why acylation may be less efficient following the M69V substitution.  相似文献   

10.
The course of stereospecific selection of nucleophilic compounds was studied in the reaction of acyl-enzymes interaction with razemic substrate-like nucleophiles, e.g. amino acid esters, by measuring optical rotation or incorporation of labelled D-compounds. It was shown that the acyl-enzymes are not responsible for the stereospecific selection of substrate-like nucleophiles. Since stereospecific selection of nucleophiles occurs in some chymotrypsin-catalyzed reactions, such selection may be produced by chymotrypsin till the formation of an acyl-enzyme compound with the substrate at the enzyme-inhibitor stage (or the Michaelis complex) with nucleophilic compounds. Even under the optimal conditions no absolute stereospecific selection of nucleophiles occurred, as was observed in case of a substrate (a donor of the acyl amino acid residue), undergoing degradation. An essential role of a specific site of nucleophile binding in the reactions of chymotrypsin-catalyzed peptide bond formation, is emphasized.  相似文献   

11.
12.
The crystal structure of the acyl complex of porcine pancreatic elastase with its peptidyl ester substrate N-acetyl-ala-ala-ala-methyl ester (Ac(Ala)3OMe) has been determined at 2.5 A resolution. The complex was stabilized by exploiting the "glass transition" in protein dynamics that occurs at around -53 degrees C (220 K). Substrate was flowed into the crystal in a cryoprotective solvent above this temperature, and then the crystal was rapidly cooled to a temperature below the transition to trap the species that formed. The use of a flow cell makes the experiment a kinetic one and means that the species prior to the rate determining transition state has a chance to accumulate. The resulting crystal structure shows an acyl-enzyme intermediate in which the leaving group is absent and the carbonyl carbon of the C-terminal alanine residue is covalently bound to the gamma oxygen of the active site serine. The ester carbonyl shows no significant distortion from planarity, with the carbonyl oxygen forming one hydrogen bond with the oxyanion hole. The tripeptide is bound in an extended antiparallel beta-sheet with main chain residues of the enzyme. The geometry and interactions of this acyl-enzyme suggest that it represents a productive intermediate. To test this hypothesis, the same crystal was then warmed above the glass transition temperature and a second data set was collected. The resulting electron density map shows no sign of the substrate, indicating hydrolysis of the intermediate followed by product release. This experiment provides direct evidence for the importance of dynamic properties in catalysis and also provides a blueprint for the stabilization of other short-lived species for direct crystallographic observation.  相似文献   

13.
Resonance Raman spectroscopic data provide conclusive evidence for the existence of an acyl-enzyme intermediate during the reaction of a thionoester substrate, N-methyloxycarbonylphenylalanylglycine methyl thionoester (CH3OC(=O)-Phe-NHCH2C(=S) OCH3), with cathepsin B from porcine spleen. The resonance Raman spectrum of CH3OC(=O)-Phe-NHCH2C(=S)S-cathepsin B, where the thiol S is from the active-site cysteine residue, is compared to that of the corresponding papain acyl-enzyme. Within the limits of experimental error (+/-2 cm-1 for peak positions), there are no detectable spectral differences. Since the resonance Raman spectrum is sensitive to the torsional angles in the glycinic bonds and the cysteine linkages, the conformations are identical in those parts of the acyl-enzymes where chemical transformation occurs. A conformational analysis of the model compound CH3OC(=O)-Phe-NHCH2C(=S)SC2H5 demonstrates that the dithioacyl group in both dithioacyl-enzymes is present as a single population of a form known as conformer B. Conformer B is characterized by a small torsional angle about the glycinic NHCH2-CS(thiol) bond such that the nitrogen and S (thiol) atoms are in close contact. This conformer is widespread among the dithioacyl intermediates of plant cysteine proteinases, and it is apparent that the same chemistry is retained in a mammalian cysteine proteinase. Steady-state kinetic parameters are also reported for CH3OC(=O)-Phe-NHCH2C(=S)OCH3 reacting with papain and cathepsin B. The similarity of the Kcat values, 0.53 and 1.15 s-1, for papain and cathepsin B, respectively, provides further evidence for a conserved deacylation process.  相似文献   

14.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

15.
In an effort to devise strategies for overcoming bacterial beta-lactamases, we studied LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone inhibitor. By possessing a catecholic functionality that resembles a natural bacterial siderophore, LN-1-255 is unique among beta-lactamase inhibitors. LN-1-255 combined with piperacillin was more potent against Escherichia coli DH10B strains bearing bla(SHV) extended-spectrum and inhibitor-resistant beta-lactamases than an equivalent amount of tazobactam and piperacillin. In addition, LN-1-255 significantly enhanced the activity of ceftazidime and cefpirome against extended-spectrum cephalosporin and Sme-1 containing carbapenem-resistant clinical strains. LN-1-255 inhibited SHV-1 and SHV-2 beta-lactamases with nm affinity (K(I) = 110 +/- 10 and 100 +/- 10 nm, respectively). When LN-1-255 inactivated SHV beta-lactamases, a single intermediate was detected by mass spectrometry. The crystal structure of LN-1-255 in complex with SHV-1 was determined at 1.55A resolution. Interestingly, this novel inhibitor forms a bicyclic aromatic intermediate with its carbonyl oxygen pointing out of the oxyanion hole and forming hydrogen bonds with Lys-234 and Ser-130 in the active site. Electron density for the "tail" of LN-1-255 is less ordered and modeled in two conformations. Both conformations have the LN-1-255 carboxyl group interacting with Arg-244, yet the remaining tails of the two conformations diverge. The observed presence of the bicyclic aromatic intermediate with its carbonyl oxygen positioned outside of the oxyanion hole provides a rationale for the stability of this inhibitory intermediate. The 2'-substituted penicillin sulfone, LN-1-255, is proving to be an important lead compound for novel beta-lactamase inhibitor design.  相似文献   

16.
Crystallographic studies of the complex between beta-lactamase and clavulanate reveal a structure of two acyl-enzymes with covalent bonds at the active site Ser70, representing two different stages of inhibitor degradation alternately occupying the active site. Models that are consistent with biochemical data are derived from the electron density map and refined at 2.2 A resolution: cis enamine, in which the carboxylate group of the clavulanate molecule makes a salt bridge with Lys234 of beta-lactamase; decarboxylated trans enamine, which is oriented away from Lys234. For both acyl-enzymes, the carbonyl oxygen atom of the ester group occupies the oxyanion hole in a manner similar to that found in inhibitor binding to serine proteases. Whereas the oxygen atom in the trans product is optimally positioned in the oxyanion hole, that of the cis product clashes with the main-chain nitrogen atom of Ser70 and the beta-carbon atom of the adjacent Ala69. In contrast to cis to trans isomerization in solution that relieves the steric strain inherent in a cis double bond, at the enzyme-inhibitor interface two additional factors play an important role. The salt bridge enhances the stability of the cis product, while the steric strain introduced by the short contacts with the protein reduces its stability.  相似文献   

17.
M A Kerr  K A Walsh  H Neurath 《Biochemistry》1975,14(23):5088-5094
p-Nitrophenyl p'-guanidinobenzoate and methylumbelliferyl p'-guanidinobenzoate, which are active site titrants for trypsin, and p-nitrophenyl p'-dimethylsulfonioacetamidobenzoate and methylumbelliferyl p'-trimethylammoniocinnamate, which are active site titrants for chymotrypsin, are also hydrolyzed by the respective zymogens. Hydrolysis in each case proceeds via the formation of acyl-zymogens. The acylation rates for the zymogens are 10(3)-10(7) times slower than for the enzymes whereas the deacylation rates of acyl-enzymes and acyl-zymogens are comparable. These findings are consistent with the idea that the diminished catalytic activity of these zymogens is due primarily to their distorted substrate binding sites. The circular dichroic spectra of the acyl-enzymes show induced negative ellipticities in the region of absorption of the acyl group, due to binding of the group in an asymmetric environment. The circular dichroic spectra of the acyl-zymogens do not, but conversion of the acyl-zymogens to acyl-enzymes changes the circular dichroic spectra to those characteristic of the acyl-enzymes. alpha-Carbamyl-epsilon-guanidinated trypsin is a derivative which resembles trypsinogen in lacking activity toward specific ester substrates but possessing low activity toward p-nitrophenyl p'-guanidinobenzoate. The circular dichroic spectrum of the acyl-enzyme formed during hydrolysis of p-nitrophenyl p'-guanidinobenzoate by this derivative resembles that of guanidinobenzoyltrypsinogen, and not that of guanidinobenzoyltrypsin. These circular dichroism studies confirm that the same serine residue is involved in catalysis by both enzymes and zymogens. They demonstrate directly that the acylating group is in a different environment in each and indicate that this specific environment is a determinant in the catalytic activity of each. Thus the circular dichroic spectra of these acyl intermediates provide a sensitive probe of the subtle conformational changes which occur on zymogen activation. The results support the previous conclusion that the major feature of the activation of trypsinogen and chymotrypsinogen is the rearrangement of the substrate binding site and that the appearance of a new amino terminus causes this rearrangement.  相似文献   

18.
The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.  相似文献   

19.
It has been shown previously [Faraci & Pratt (1985) Biochemistry 24, 903-910; (1986) Biochemistry 25, 2934-2941; (1986) Biochem. J. 238, 309-312] that certain beta-lactam-processing enzymes form inert acyl-enzymes with cephems that possess good leaving groups at the C-3' position. These inert species arise by elimination of the leaving group from the initially formed and more rapidly hydrolysing acyl-enzyme, which has the 'normal' cephalosporoate structure. The present paper shows that a strong nucleophile, thiophenoxide, can catalyse the re-activation of three examples of these inert acyl-enzymes, generated on reaction of cephalothin and cefoxitin with the PC1 beta-lactamase of Staphylococcus aureus and of cephalothin with D-alanyl-D-alanine transpeptidase/carboxypeptidase of Streptomyces R61. In view of the reversibility of the elimination reaction, demonstrated in model systems [Pratt & Faraci (1986) J. Am. Chem. Soc. 108, 5328-5333], this catalysis is proposed to arise through nucleophilic addition to the exo-methylene carbon atom of the inert acyl-enzyme to regenerate a more rapidly hydrolysing normal cephalosporoate. Strong support for this scenario was obtained through comparison of the kinetics of the catalysed re-activation reaction with those of turnover of the relevant 3'-thiophenoxycephems, thiophenoxycephalothin and thiophenoxycefoxitin. The enzymes appear to stabilize the products of the elimination reaction with respect to the normal cephalosporoate, but more strongly to destabilize the transition states. The effects of other nucleophiles, including cysteine, glycine amide and imidazole, on the above enzymes and on other beta-lactamases can be understood in terms of the model reaction kinetics and thermodynamics.  相似文献   

20.
Pratt RF  McLeish MJ 《Biochemistry》2010,49(45):9688-9697
The β-lactam-recognizing enzymes (BLRE) make up a superfamily of largely bacterial proteins that include, principally, the dd-peptidases and β-lactamases. The former enzymes catalyze the final step in bacterial cell wall biosynthesis and are inhibited by β-lactam antibiotics, while the latter enzymes catalyze the hydrolytic destruction of β-lactams and represent a major source of bacterial resistance to these antibiotics. The active site of this superfamily of enzymes includes a Ser1/Ser2(Tyr)/Lys1(His)/Lys2 tetrad in which Ser1 is a nucleophilic catalyst that becomes acylated in the formation of an acyl-enzyme intermediate. An oxyanion hole is also present. The amidase signature (AS) enzymes represent another serine amidohydrolase superfamily with no overall structural resemblance to the BLRE. The active site is characterized by a Ser1/Ser2/Lys1/NH tetrad and an oxyanion hole. We point out that there is a close spatial overlap between the two tetrads and speculate that this has arisen from a process of convergent evolution driven by a mechanistic imperative. Conversion of the backbone NH group of the AS tetrad into Lys2 of the BLRE is rationalized and leads to another mechanistic possibility that may dominate BLRE catalysis. The active site triads of other serine amidohydrolases are also briefly and comparatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号