首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

2.
Aboveground herbivory is well known to change plant growth and defence. In contrast, effects of soil organisms, acting alone or in concert, on allocation patterns are less well understood. We investigated separate and combined effects of the endogeic earthworm species Aporrectodea caliginosa and the root feeding nematode species Pratylenchus penetrans and Meloidogyne incognita on plant responses including growth and defence metabolite concentrations in leaves of white mustard, Sinapis alba. Soil biota had a strong impact on plant traits, with the intensity varying due to species combinations. Nematode infestation reduced shoot biomass and nitrogen concentration but only in the absence of earthworms. Earthworms likely counteracted the negative effects of nematodes. Infestation with the migratory lesion-nematode P. penetrans combined with earthworms led to increased root length. Earthworm biomass increased in the presence of this species, indicating that these nematodes increased the food resources of earthworms—presumably dead and decaying roots. Nitrogen-based defence compounds, i.e. glucosinolates, did not correlate with nitrogen levels. In the presence of earthworms, concentrations of aromatic glucosinolates in leaves were significantly increased. In contrast, infection with P. penetrans strongly decreased concentrations of glucosinolates (up to 81%). Infestation with the sedentary nematode M. incognita induced aromatic glucosinolates by more than 50% but only when earthworms were also present. Myrosinase activities, glucosinolate-hydrolysing enzymes, were unaffected by nematodes but reduced in the presence of earthworms. Our results document that root-feeding nematodes elicit systemic plant responses in defence metabolites, with the responses varying drastically with nematode species of different functional groups. Furthermore, systemic plant responses are also altered by decomposer animals, such as earthworms, challenging the assumption that induction of plant responses including defence traits is restricted to herbivores. Soil animals even interact and modulate the individual effects on plant growth and plant defence, thereby likely also influencing shoot herbivore attack.  相似文献   

3.
Summary Seasonal dynamics of soil nematodes and root biomass were examined from under western wheatgrass (Agropyron smithii) and little bluestem (Andropogon scoparius) from a heavily grazed prairie dog (Cynomys ludovicianus) colony occupied for 5 to 10 years and an adjacent lightly grazed, uncolonized area in Wind Cave National Park, South Dakota, USA. Nematodes were differentiated into classes of plant-parasitic Tylenchida and Dorylaimida and nonparasitic Dorylamida and Rhabditida. Root-feeding nematodes were generally more numerous from A. smithii than from A. scoparius, while nonparasitic populations were not different in soil from beneath the two plant species. Rhabditida, parasitic Dorylaimida and Tylenchida (from A. scoparius only) were more numerous on the prairie dog colony than from the uncolonized site, but nonparasitic Dorylaimida populations did not differ between the two areas. Mean total (live plus dead) root biomass beneath A. scoparius and A. smithii on the prairie dog colony averaged 71% and 81%, respectively, of values from the uncolonized area. Estimated consumption by root-feeding nematodes averaged 12.6% and 5.8% of annual net root production in the upper 10 cm from the prairie dog colony and uncolonized site, respectively. We conclude that, because of microhabitat modification or reductions in plant resistance to nematodes, heavy grazing by aboveground herbivores apparently facilitates grazing by belowground herbivores. Because heavily grazed plants have less roots than lightly grazed or ungrazed plants, the impact of root-feeding nematodes on primary producers is likely to be greatest in heavily grazed grasslands.  相似文献   

4.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

5.
Plants are simultaneously attacked by a multitude of herbivores that affect plant responses and plant-mediated interactions in a variety of ways. So far, studies on indirect interactions between below- and aboveground herbivores have almost exclusively focused on interactions between only one root and one shoot herbivore species at the same time. Since these studies show a variety of outcomes, we test the hypothesis that root herbivore identity matters in below-/aboveground interactions. We studied the combined effects root-feeding nematodes (Pratylenchus penetrans) and wireworms (Agriotes lineatus larvae) on Plantago lanceolata and on the performance of aboveground phloem-feeding aphids (Myzus persicae) and chewing caterpillars (Chrysodeixis chalcites larvae). Since root herbivores may also affect resource availability and the microbial community in the rhizosphere, we examined resource utilization by soil microorganisms using BIOLOG EcoPlates™.

Wireworms decreased root biomass by 13%, but led to compensatory shoot growth. Nematodes and the aboveground herbivores did not affect the biomass of Plantago lanceolata. Feeding by C. chalcites larvae enhanced the concentration of aucubin in leaves, which might explain the high mortality of the caterpillars. Aphids and the belowground herbivores did not change iridoid glycoside levels in the leaves. However, the number of aphid offspring was reduced by 44% when nematodes had been added to the soil, whereas wireworms had no effect. We observed higher utilization of BIOLOG carbon sources by the soil microorganisms only in the presence of Pratylenchus penetrans. Our results suggest that the outcome of below–aboveground interactions highly depends on herbivore identity.  相似文献   


6.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

7.
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance.  相似文献   

8.
Plant secondary metabolites play an important role in constitutive and inducible direct defense of plants against their natural enemies. While induction of defense by aboveground pathogens and herbivores is well-studied, induction by belowground organisms is less explored. Here, we examine whether soil microorganisms and nematodes can induce changes in levels of the secondary metabolites aucubin and catalpol (iridoid glycosides, IG) in roots and root exudates of two full-sib families of Plantago lanceolata originating from lines selected for low and high constitutive levels of IG in leaves. Addition of soil microorganisms enhanced the shoot and root biomass, and the concentration of aucubin in roots of both Plantago lines without affecting IG levels in the rhizosphere. By contrast, nematode addition tended to reduce the root biomass and enhanced the stalk biomass, and increased the levels of aucubin and catalpol in root exudates of both Plantago lines, without affecting root IG concentrations. The Plantago lines did not differ in constitutive levels of aucubin and total IG in roots, while the concentration of catalpol was slightly higher in roots of plants originally selected for low constitutive levels of IG in leaves. Root exudates of “high IG line” plants contained significantly higher levels of aucubin, which might be explained by their higher root biomass. We conclude that soil microorganisms can induce an increase of aucubin concentrations in the roots, whereas nematodes (probably plant feeders) lead to an enhancement of aucubin and catalpol levels in root exudates of P. lanceolata. A potential involvement of secondary metabolites in belowground interactions between plants and soil organisms is discussed.  相似文献   

9.
Resource patch size and patch nutritional quality are both important factors influencing local densities of herbivores. The responses of herbivores to resource patch size have been mostly studied in aboveground plant–insect interactions, whereas belowground organisms have received little attention. We studied responses of different root-feeding nematode species associated with marram grass (Ammophila arenaria (L.) Link) to resource patch size and quality. Different nematode species were released in experimental mesocosms filled with dune sand in which we established marram grass patches of varying sizes. Half of the patches of small, medium and large size were fertilized to test if immigration probabilities of nematodes depended on patch quality. We tested the hypotheses that (1) nematodes should aggregate on larger patches and (2) colonization of patches would also depend on patch nutritional quality, with higher nematode recapture rates expected in fertilized patches. Two species (Helicotylenchus pseudorobustus, Hemicycliophora thornei) of the five released species were recaptured in the experiment. The fraction of nematodes immigrating into the rhizosphere of a plant patch increased with patch size (i.e. root biomass), which was in line with predictions of the Resource Concentration Hypothesis. When fractions were recalculated to represent recapture rates per liter of soil, recapture rates of nematodes did not differ among patch sizes, indicating that the increase in recapture rates was directly proportional to the increase in patch size. This suggests that the process through which nematodes located patches was not distinguishable from a random process where entering patches is based on random encounters with patch boundaries. In contrast to our expectation, fertilization had a strong negative effect on patch responses of both nematode species. Our study represents an approach that may be used to explore whether belowground biota behave in similar ways as aboveground biota, in order to determine how perceived differences in environments affect ecological interactions.  相似文献   

10.
Field experiments were carried out in 1991 and 1992 on sandy soil highly infested with the potato cyst nematode Globodera pallida. Half the trial area was fumigated with nematicide to establish two levels of nematode density. Three levels of soil compaction were made by different combinations of artificial compaction and rotary cultivation. Two potato cultivars were used in 1991 and four in 1992. Both high nematode density and soil compaction caused severe yield losses, of all cultivars except cv. Elles which was tolerant of nematode attack. The effects of the two stress factors were generally additive. Analysis of the yield loss showed that nematodes mainly reduced cumulative interception of light while compaction mainly reduced the efficiency with which intercepted light was used to produce biomass. This indicates that nematodes and compaction affect growth via different damage mechanisms. Nematodes reduced light interception by accelerating leaf senescence, by decreasing the specific leaf area and indirectly by reducing overall crop growth rate. Partitioning of biomass between leaves, stems and tubers was not affected by nematode infestation but compaction decreased partitioning to leaves early in the growing season while increasing it during later growth stages. The effects of nematodes and compaction on root length dynamics and nutrient uptake were also additive. This suggests that the commonly observed variation in yield loss caused by nematodes on different soil types is not related to differences in root system expansion between soils of various strength. Cv. Elles, which showed tolerance of nematodes by relatively low yield losses in both experiments, was characterised by high root length density and thick roots. These characteristics did not confer tolerance of soil compaction, since compaction affected root lengths and tuber yields equally in all cultivars. In the first experiment only, high nematode density led to decreased root lengths and lower plant nutrient concentrations. The yield loss which occurred in the second experiment was attributed to the effects of nematodes on other aspects of plant physiology.  相似文献   

11.
Dominance of warm‐season grasses modulates tallgrass prairie ecosystem structure and function. Reintroduction of these grasses is a widespread practice to conserve soil and restore prairie ecosystems degraded from human land use changes. Seed sources for reintroduction of dominant prairie grass species include local (non‐cultivar) and selected (cultivar) populations. The primary objective of this study was to quantify whether intraspecific variation in developing root systems exists between population sources (non‐cultivar and cultivar) of two dominant grasses (Sorghastrum nutans and Schizachyrium scoparium) widely used in restoration. Non‐cultivar and cultivar grass seedlings of both species were isolated in an experimental prairie restoration at the Konza Prairie Biological Station. We measured above‐ and belowground net primary production (ANPP and BNPP, respectively), root architecture, and root tissue quality, as well as soil moisture and plant available inorganic nitrogen (N) in soil associated with each species and source at the end of the first growing season. Cultivars had greater root length, surface area, and volume than non‐cultivars. Available inorganic N and soil moisture were present in lower amounts in soil proximal to roots of cultivars than non‐cultivars. Additionally, soil NO3–N was negatively correlated with root volume in S. nutans cultivars. While cultivars had greater BNPP than non‐cultivars, this was not reflected aboveground root structure, as ANPP was similar between cultivars and non‐cultivars. Intraspecific variation in belowground root structure and function exists between cultivar and non‐cultivar sources of the dominant prairie grasses during initial reestablishment of tallgrass prairie. Population source selection should be considered in setting restoration goals and objectives.  相似文献   

12.
Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus . Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry.  相似文献   

13.
Root-feeding herbivores can affect plant performance and the composition of natural plant communities, but there is little information about the mechanisms that control root herbivores in natural systems. This study explores the interactions between the pioneer dune grass Ammophila arenaria, arbuscular mycorrhizal fungi (AMF) and the root-feeding nematode Pratylenchus penetrans. Our objectives were to determine whether AMF can suppress nematode infection and reproduction and to explore the mechanisms of nematode control by AMF. A sequential inoculation experiment and a split-root experiment were designed to analyse the importance of plant tolerance and resistance and of direct competition between AMF and P. penetrans for the root herbivore and the plant. Root infection and multiplication of P. penetrans were significantly reduced by the native inoculum of AMF. Plant preinoculation with AMF further decreased nematode colonization and reproduction. Nematode suppression by AMF did not occur through a systemic plant response but through local mechanisms. Our results suggest that AMF are crucial for the control of root-feeding nematodes in natural systems and illustrate that locally operating mechanisms are involved in this process.  相似文献   

14.
Invasive plants generally have fewer aboveground pathogens and viruses in their introduced range than in their natural range, and they also have fewer pathogens than do similar plant species native to the introduced range. However, although plant abundance is strongly controlled by root herbivores and soil pathogens, there is very little knowledge on how invasive plants escape from belowground enemies. We therefore investigated if the general pattern for aboveground pathogens also applies to root-feeding nematodes and used the natural foredune grass Ammophila arenariaas a model. In the late 1800s, the European A. arenariawas introduced into southeast Australia (Tasmania), New Zealand, South Africa, and the west coast of the USA to be used for sand stabilization. In most of these regions, it has become a threat to native vegetation, because its excessive capacity to stabilize wind-blown sand has changed the geomorphology of coastal dunes. In stable dunes of most introduced regions, A. arenaria is more abundant and persists longer than in stabilized dunes of the natural range. We collected soil and root samples and used additional literature data to quantify the taxon richness of root-feeding nematodes on A.␣arenaria in its natural range and collected samples from the four major regions where it has been introduced. In most introduced regions A. arenaria did not have fewer root-feeding nematode taxa than the average number in its natural range, and native plant species did not have more nematode taxa than the introduced species. However, in the introduced range native plants had more feeding-specialist nematode taxa than A. arenaria and major feeding specialists (the sedentary endoparasitic cyst and root knot nematodes) were not found on A. arenaria in the southern hemisphere. We conclude that invasiveness of A. arenaria correlates with escape from feeding specialist nematodes, so that the pattern of escape from root-feeding nematodes is more alike escape from aboveground insect herbivores than escape from aboveground pathogens and viruses. In the natural range of A. arenaria, the number of specialist-feeding nematode taxa declines towards the margins. Growth experiments are needed to determine the relationship between nematode taxon diversity, abundance, and invasiveness of A. arenaria.  相似文献   

15.
Interspecific interactions between insect herbivores predominantly involve asymmetric competition. By contrast, facilitation, whereby herbivory by one insect benefits another via induced plant susceptibility, is uncommon. Positive reciprocal interactions between insect herbivores are even rarer. Here, we reveal a novel case of reciprocal feeding facilitation between above-ground aphids (Amphorophora idaei) and root-feeding vine weevil larvae (Otiorhynchus sulcatus), attacking red raspberry (Rubus idaeus). Using two raspberry cultivars with varying resistance to these herbivores, we further demonstrate that feeding facilitation occurred regardless of host plant resistance. This positive reciprocal interaction operates via an, as yet, unreported mechanism. Specifically, the aphid induces compensatory growth, possibly as a prelude to greater resistance/tolerance, whereas the root herbivore causes the plant to abandon this strategy. Both herbivores may ultimately benefit from this facilitative interaction.  相似文献   

16.
Tu C  Koenning SR  Hu S 《Microbial ecology》2003,46(1):134-144
Obligate root-parasitic nematodes can affect soil microbes positively by enhancing C and nutrient leakage from roots but negatively by restricting total root growth. However, it is unclear how the resulting changes in C availability affect soil microbial activities and N cycling. In a microplot experiment, effects of root-parasitic reniform nematodes (Rotylenchulus reniformis) on soil microbial biomass and activities were examined in six different soils planted with cotton. Rotylenchulus reniformis was introduced at 900 nematodes kg–1 soil in May 2000 prior to seeding cotton. In 2001, soil samples were collected in May before cotton was seeded and in November at the final harvest. Extractable C and N were consistently higher in the R. reniformis treatments than in the non-nematode controls across the six different soils. Nematode inoculation significantly reduced microbial biomass C, but increased microbial biomass N, leading to marked decreases in microbial biomass C:N ratios. Soil microbial respiration and net N mineralization rates were also consistently higher in the nematode treatments than in the controls. However, soil types did not have a significant impact on the effects of nematodes on these microbial parameters. These findings indicate that nematode infection of plant roots may enhance microbial activities and the turnover of soil microbial biomass, facilitating soil N cycling. The present study provides the first evidence about the direct role of root-feeding nematodes in enhancing soil N mineralization.  相似文献   

17.

Aims

It is unclear how changing atmospheric conditions, including rising carbon dioxide concentration, influence interactions between above and below-ground systems and if intraspecific variation exists in this response.

Methods

We assessed interactive effects of atmospheric CO2 concentration, above-ground herbivory, and plant genotype on root traits and mycorrhizal associations. Plants from five families of Asclepias syriaca, a perennial forb, were grown under ambient and elevated atmospheric CO2 concentrations. Foliar herbivory by either lepidopteran caterpillars or phloem-feeding aphids was imposed. Mycorrhizal colonization, below-ground biomass, root biomass, and secondary defensive chemistry in roots were quantified.

Results

We observed substantial genetic variation among A. syriaca families in their mycorrhizal colonization levels in response to elevated CO2 and herbivory treatments. Elevated CO2 treatment increased root biomass in all genetic families, whereas foliar herbivory tended to decrease root biomass. Root cardenolide concentration and composition varied greatly among plant families, and elevated CO2 treatment increased root cardenolides in two of the five plant families. Moreover, herbivores differentially affected the composition of cardenolides expressed below ground.

Conclusions

Increased atmospheric CO2 has the potential to influence interactions among plants, herbivores and mycorrhizal fungi and intraspecific variation suggests that such interactions can evolve.  相似文献   

18.
The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather than by genetic resistance mechanisms. However, the nematode resistant cultivar did not support maturation of nematodes until a soil tempurature of 35 C was attained. This indicated that resistance mechanisms are partially repressed at 35 C and differences in nematode development cannot be explained in terms of accumulated heat units. The moderately resistant cultivar was significantly more sensitive to the effects of high temperature than was the resistant cultivar.  相似文献   

19.
Belowground herbivores can exert important controls on the composition of natural plant communities. Until now, relatively few studies have investigated which factors may control the abundance of belowground herbivores. In Dutch coastal foredunes, the root-feeding nematode Tylenchorhynchus ventralis is capable of reducing the performance of the dominant grass Ammophila arenaria (Marram grass). However, field surveys show that populations of this nematode usually are controlled to nondamaging densities, but the control mechanism is unknown. In the present study, we first established that T. ventralis populations are top-down controlled by soil biota. Then, selective removal of soil fauna suggested that soil microorganisms play an important role in controlling T. ventralis. This result was confirmed by an experiment where selective inoculation of microarthropods, nematodes and microbes together with T. ventralis into sterilized dune soil resulted in nematode control when microbes were present. Adding nematodes had some effect, whereas microarthropods did not have a significant effect on T. ventralis. Our results have important implications for the appreciation of herbivore controls in natural soils. Soil food web models assume that herbivorous nematodes are controlled by predaceous invertebrates, whereas many biological control studies focus on managing nematode abundance by soil microorganisms. We propose that soil microorganisms play a more important role than do carnivorous soil invertebrates in the top-down control of herbivorous ectoparasitic nematodes in natural ecosystems. This is opposite to many studies on factors controlling root-feeding insects, which are supposed to be controlled by carnivorous invertebrates, parasitoids, or entomopathogenic nematodes. Our conclusion is that the ectoparasitic nematode T. ventralis is potentially able to limit productivity of the dune grass A. arenaria but that soil organisms, mostly microorganisms, usually prevent the development of growth-reducing population densities.  相似文献   

20.
Growing empirical evidence suggests that aboveground and belowground multitrophic communities interact. However, investigations that comprehensively explore the impacts of above‐ and belowground third and higher trophic level organisms on plant and herbivore performance are thus far lacking. We tested the hypotheses that above‐ and belowground higher trophic level organisms as well as decomposers affect plant and herbivore performance and that these effects cross the soil–surface boundary. We used a well‐validated simulation model that is individual‐based for aboveground trophic levels such as shoot herbivores, parasitoids, and hyperparasitoids while considering belowground herbivores and their antagonists at the population level. We simulated greenhouse experiments by removing trophic levels and decomposers from the simulations in a factorial design. Decomposers and above‐ and belowground third trophic levels affected plant and herbivore mortality, root biomass, and to a lesser extent shoot biomass. We also tested the effect of gradual modifications of the interactions between different trophic level organisms with a sensitivity analysis. Shoot and root biomass were highly sensitive to the impact of the fourth trophic level. We found effects that cross the soil surface, such as aboveground herbivores and parasitoids affecting root biomass and belowground herbivores influencing aboveground herbivore mortality. We conclude that higher trophic level organisms and decomposers can strongly influence plant and herbivore performance. We propose that our modelling framework can be used in future applications to quantitatively explore the possible outcomes of complex above‐ and belowground multitrophic interactions under a range of environmental conditions and species compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号