首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.  相似文献   

2.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

3.
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.  相似文献   

4.
Rhizobia, the root-nodule endosymbionts of leguminous plants, also form natural endophytic associations with roots of important cereal plants. Despite its widespread occurrence, much remains unknown about colonization of cereals by rhizobia. We examined the infection, dissemination, and colonization of healthy rice plant tissues by four species of gfp-tagged rhizobia and their influence on the growth physiology of rice. The results indicated a dynamic infection process beginning with surface colonization of the rhizoplane (especially at lateral root emergence), followed by endophytic colonization within roots, and then ascending endophytic migration into the stem base, leaf sheath, and leaves where they developed high populations. In situ CMEIAS image analysis indicated local endophytic population densities reaching as high as 9 × 1010 rhizobia per cm3 of infected host tissues, whereas plating experiments indicated rapid, transient or persistent growth depending on the rhizobial strain and rice tissue examined. Rice plants inoculated with certain test strains of gfp-tagged rhizobia produced significantly higher root and shoot biomass; increased their photosynthetic rate, stomatal conductance, transpiration velocity, water utilization efficiency, and flag leaf area (considered to possess the highest photosynthetic activity); and accumulated higher levels of indoleacetic acid and gibberellin growth-regulating phytohormones. Considered collectively, the results indicate that this endophytic plant-bacterium association is far more inclusive, invasive, and dynamic than previously thought, including dissemination in both below-ground and above-ground tissues and enhancement of growth physiology by several rhizobial species, therefore heightening its interest and potential value as a biofertilizer strategy for sustainable agriculture to produce the world's most important cereal crops.  相似文献   

5.
Referee: Prof. Dr. Dietrich Werner, FG Zellbiologie und Angewandte Botanik, Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse, D-35032 Marburg, Germany Rhizobia are well known for their capacity to establish a symbiosis with legumes. They inhabit root nodules, where they reduce atmospheric nitrogen and make it available to the plant. Biological nitrogen fixation is an important component of sustainable agriculture, and rhizobial inoculants have been applied frequently as biofertilizers. In this review we present recently developed technologies and strategies for selecting quality inoculant strains by taking into consideration the complex interaction between the edaphic environment with the genotypes of both the legume and its microsymbiont. Enhanced competitive ability in an inoculant strain is a key requirement for successful colonization of plant roots, nodule formation, and subsequent N2-fixation. We discuss several avenues for the management and manipulation of rhizobial competition as well as genes that influence competition in the rhizosphere. The use of molecular techniques has greatly contributed to our knowledge of nodule-bacterial diversity and phylogeny. Approaches to the study of rhizobial diversity as well as mechanisms for the evolutionary diversification of nodulating bacteria are presented. Rhizobium genomes ranging from 5.5 to 9?Mb have been sequenced recently and deposited in public databases. A comparison of sequence data has led to a better understanding of genes involved in the symbiotic process as well as possible mechanisms responsible for horizontal transfer of genetic elements and symbiosis genes among rhizobia. Furthermore, rhizobia are frequent rhizosphere colonizers of a wide range of plants and may also inhabit nonleguminous plants endophytically. In these rhizospheric and endophytic habitats they may exhibit several plant growth-promoting effects, such as hormone production, phosphate solubilization, and the suppression of pathogens.  相似文献   

6.
High-throughput sequencing of the amplicon gene library revealed variations in the population structure of clover rhizobia (Rhizobium leguminosarum bv. trifolii) upon transition from soil into the root nodules of the host plant (Trifolium hybridum). Analysis of rhizobial diversity using the nodA gene revealed 3258 and 1449 nucleotide sequences (allelic variants) for the soil and root nodule population, respectively. They were combined into 29 operational taxonomic units (OTU) according to the 97% identity level; 24 OTU were found in the soil population, 12 were present in the root nodule population, and 7 were common. The predominant OTE13 (77.4 and 91.5% of the soil and root nodule populations, respectively) contained 155 and 200 variants of the soil and root nodule populations, respectively, with the nucleotide diversity increasing significantly upon the “soil → root” transition. The “moving window” approach was used to reveal the sites of the nodA gene in which polymorphism, including that associated with increased frequency of non-synonymous substitution frequency, increased sharply upon transition from soil into root nodules. PCR analysis of the IGS genotypes of individual strains revealed insignificant changes in rhizobial diversity upon transition from soil into root nodules. These results indicate that acceleration of rhizobial evolution in the course of symbiosis may be associated with development of highly polymorphic virulent subpopulations subjected to directional selection in the “plant-soil” system.  相似文献   

7.
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.  相似文献   

8.
Several bacterial isolates were recovered from surface-sterilized root nodules of Arachis hypogaea L. (peanut) plants growing in soils from Córdoba, Argentina. The 16S rDNA sequences of seven fast-growing strains were obtained and the phylogenetic analysis showed that these isolates belonged to the Phylum Proteobacteria, Class Gammaproteobacteria, and included Pseudomonas spp., Enterobacter spp., and Klebsiella spp. After storage, these strains became unable to induce nodule formation in Arachis hypogaea L. plants, but they enhanced plant yield. When the isolates were co-inoculated with an infective Bradyrhizobium strain, they were even found colonizing pre-formed nodules. Analysis of symbiotic genes showed that the nifH gene was only detected for the Klebsiella-like isolates and the nodC gene could not be amplified by PCR or be detected by Southern blotting in any of the isolates. The results obtained support the idea that these isolates are opportunistic bacteria able to colonize nodules induced by rhizobia.  相似文献   

9.
Cooper JE  Rao JR 《Plant physiology》1992,100(1):444-450
Two-dimensional paper chromatography in four solvent systems, high-sensitivity spray reagents, and UV absorption spectroscopy were used to separate and characterize flavonoids and isoflavonoids in roots and root nodules of 20-d-old Lotus pedunculatus Cav. Seedlings were grown either under sterile conditions or after inoculation with Fix+ or Fix strains of Rhizobium loti. Flavonoids rather than isoflavonoids predominated in all tissues. Flavonoid profiles in sterile and denodulated root tissues were remarkably similar, both qualitatively and quantitatively. At least 14 partially purified flavonoid aglycones and conjugates were found in root extracts; denodulated root tissues contained no compounds that were not also present in sterile roots. Fix+ rhizobia were responsible for major postinfection shifts in plant flavonoid biosynthesis at the sites of nodule morphogenesis. Polymeric flavolans were absent from Fix+ nodules but present in all root tissues and in Fix nodules. Catechin was detected only in Fix+ nodules.  相似文献   

10.
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.

Precise spatial and temporal characterization of cytokinin (CK) responses reveals the function of the CK biosynthesis gene ISOPENTENYLTRANSFERASE 3 during nodule development in Medicago truncatula.  相似文献   

11.
Colonization behavior of endophytic bacteria Burkholderia cepacia strains RRE-3 and RRE-5 was studied in the seedlings of rice variety NDR97 using confocal laser scanning microscopy under controlled laboratory and greenhouse conditions. For studying colonization pattern, bacterial strains were tagged with pHRGFPGUS plasmid. The role of bacterial strains (both gfp/gus-tagged and untagged) in growth promotion was also studied. After coming into contact with the host root system the bacteria showed an irregular spreading. Dense colonization was observed on the primary and secondary roots and also on the junction of emergence of the lateral roots. Results showed that the colonization pattern of Burkholderia cepacia strains was similar to that of other endophytic bacteria isolated from non-legumes. Burkholderia cepacia got entry inside the root at the sites of emergence of lateral roots, without formation of infection threads as in the case of symbiotic rhizobacteria. Observations suggested that the endophytic bacterial strains RRE-3 and RRE-5 entered inside the rice roots in a progressive manner. Bacteria were found to line up along the intercellular spaces of adjoining epidermal cells adjacent to the lateral root junction, indicating endophytic colonization pattern of Burkholderia cepacia strains. Experiments with the rice seedlings inoculated with RRE-3 and RRE-5 strains revealed that both strains enhanced plant growth considerably when observed under laboratory and greenhouse conditions and produced significantly higher plant biomass. No considerable difference was observed between the gfp/gus-tagged and non-gfp/gus-tagged strains in the plant growth experiments both in the laboratory and greenhouse conditions.  相似文献   

12.
The ability of indigenous Rhizobium leguminosarum and Rhizobium meliloti to use organic nutrients as growth substrates in soil was assessed by indirect bacteriophage analysis. A total of 17 organic compounds, including 9 carbohydrates, 3 organic acids, and 5 amino acids, were tested (1,000 μg g−1) in three soils with different cropping histories. Four additional soils were screened with a glucose amendment. Nutrient amendments stimulated growth of indigenous rhizobia, allowing subsequent replication of indigenous bacteriophages. Phage populations were enumerated by plating soil extracts on 19 R. leguminosarum and 9 R. meliloti indicator strains, including root nodule isolates from the soils assayed. On the basis of indirect phage analysis, all soils contained native rhizobia similar to one or more of the indicator strains, although not all indicator strains were detected in soil. All organic compounds stimulated growth of indigenous rhizobia, but the growth response varied for each rhizobial strain depending on the nutrient, the nutrient concentration, and the soil. Indigenous rhizobia readily utilized most organic compounds except phenylalanine, glycine, and aspartic acid. The ability of indigenous rhizobia to utilize a wide range of organic compounds as growth substrates in situ indicates their ability to successfully compete with other soil bacteria for nutrients in these soils.  相似文献   

13.
We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191.  相似文献   

14.
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.  相似文献   

15.
Spontaneous mutants of Rhizobium meliloti L5-30 defective in motility or chemotaxis were isolated and compared against the parent with respect to symbiotic competence. Each of the mutants was able to generate normal nodules on the host plant alfalfa (Medicago sativa), but had slightly delayed nodule formation, diminished nodulation in the initially susceptible region of the host root, and relatively low representation in nodules following co-inoculation with equal numbers of the parent. When inoculated in growth pouches with increasing dosages of the parental strain, the number of nodules formed in the initially susceptible region of the root increased sigmoidally, with an optimum concentration of about 105 to 106 bacteria/plant. The dose-response behavior of the nonmotile and nonchemotactic mutants was similar, but they required 10- to 30-fold higher concentrations of bacteria to generate the same number of nodules. The distribution frequencies of nodules at different positions along the primary root were very similar for the mutants and parent, indicating that reduced nodulation by the mutants in dose-response experiments probably reflects reduced efficiency of nodule initiation rather than developmentally delayed nodule initiation. The number of bacteria that firmly adsorbed to the host root surface during several hours of incubation was 5- to 20-fold greater for the parent than the mutants. The mutants were also somewhat less effective than their parent as competitors in root adsorption assays. It appears that motility and chemotaxis are quantitatively important traits that facilitate the initial contact and adsorption of symbiotic rhizobia to the host root surface, increase the efficiency of nodule initiation, and increase the rate of infection development.  相似文献   

16.
Legume roots in nature are usually colonized with rhizobia and different arbuscular mycorrhizal fungi (AMF) species. Light microscopy that visualizes the presence of AMF in roots is not able to differentiate the ratio of each AMF species in the root and nodule tissues in mixed fungal inoculation. The purpose of this study was to characterize the dominant species of mycorrhiza in roots and nodules of plants co-inoculated with mycorrhizal fungi and rhizobial strains. Glomus intraradices (GI), Glomus mosseae (GM), their mix (GI + GM), and six Mesorhizobium ciceri strains were used to inoculate chickpea. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess occupancy of these fungal species in roots and nodules. Results showed that GI molecular ratio and relative density were higher than GM in both roots and nodules. These differences in molecular ratio and density between GI and GM in nodules were three folds higher than roots. The results suggested that M. ciceri strains have different effects on nodulation and mycorrhizal colonization pattern. Plants with bacterial S3 and S1 strains produced the highest root nodulation and higher fungal density in both the roots and nodules.  相似文献   

17.
Roots of legumes establish symbiosis with arbuscular mycorrhizal fungi (AMF) and nodule-inducing rhizobia. The existing nodules systemically suppress subsequent nodule formation in other parts of the root, a phenomenon termed autoregulation. Similarly, mycorrhizal roots reduce further AMF colonization on other parts of the root system. In this work, split- root systems of alfalfa (Medicago sativa) were used to study the autoregulation of symbiosis with Sinorhizobium meliloti and the mycorrhizal fungus Glomus mosseae. It is shown that nodulation systemically influences AMF root colonization and vice versa. Nodules on one half of the split-root system suppressed subsequent AMF colonization on the other half. Conversely, root systems pre-colonized on one side by AMF exhibited reduced nodule formation on the other side. An inhibition effect was also observed with Nod factors (lipo-chito-oligosaccharides). NodSm-IV(C16:2, S) purified from S. meliloti systemically suppressed both nodule formation and AMF colonization. The application of Nod factors, however, did not influence the allocation of (14)C within the split-root system, excluding competition for carbohydrates as the regulatory mechanism. These results indicate a systemic regulatory mechanism in the rhizobial and the arbuscular mycorrhizal association, which is similar in both symbioses.  相似文献   

18.
19.
In this study, bacteria hosted in root nodules of single plants of legume Arachis hypogaea L. (peanut) cv Tegua Runner growing at field were isolated. The collection of nodule isolates included both fast and slow growing strains. Their genetic diversity was assessed in order to identify the more frequently rhizobial strain associated to nodules from single plants. Molecular fingerprinting of 213 nodular isolates indicated heterogeneity, absence of a dominant genotype and, therefore, of a unique strains highly competitive. Efficient nitrogen-fixing isolates were identified as Bradyrhizobium sp. by phylogenetic analysis of the sequences of their 16S rRNA genes. The genetic diversity of 68 peanut nodulating isolates from all the collected plants was also analyzed. Considering their ERIC-PCR profiles, they were grouped in eighteen different OTUs for 60% similarity cut-off. Results obtained in this study indicate that the genetic diversity of rhizobia occupying nodules from single plant is very high, without the presence of a dominant strain. Therefore, the identification of useful peanut rhizobia for agricultural purposes requires strongly the selection, among the diverse population, of a very competitive genotype in combination with a high-symbiotic performance.  相似文献   

20.
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号